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Roger Penrose’s groundbreaking and bestselling The Road to Reality
(2005) provided a comprehensive yet readable guide to our under-
standing of the laws that are currently believed to govern our universe.
In Cycles of Time, he moves far beyond this to develop a completely
new perspective on cosmology, providing a quite unexpected answer
to the often-asked question ‘What came before the Big Bang?’

The two key ideas underlying this novel proposal are a penetrating
analysis of the Second Law of thermodynamics—according to which
the ‘randomness’ of our world is continually increasing—and a
thorough examination of the light-cone geometry of space-time. Penrose
is able to combine these two central themes to show how the expected
ultimate fate of our accelerating, expanding universe can actually be
reinterpreted as the ‘big bang’ of a new one.

On the way, many other basic ingredients are presented, and their roles
discussed in detail, though without any complex mathematical formulae
(these all being banished to the appendices). Various standard and non-
standard cosmological models are presented, as is the fundamental and
ubiquitous role of the cosmic microwave background. Also crucial to
the discussion are the huge black holes lying in galactic centres, and
their eventual disappearance via the mysterious process of Hawking
evaporation.
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Preface

ONE of the deepest mysteries of our universe is the puzzle of whence
it came.

When I entered Cambridge University as a mathematics graduate
student, in the early 1950s, a fascinating cosmological theory was in the
ascendant, known as the steady-state model. According to this scheme,
the universe had no beginning, and it remained more-or-less the same,
overall, for all time. The steady-state universe was able to achieve this,
despite its expansion, because the continual depletion of material arising
from the universe’s expansion is taken to be compensated by the continual
creation of new material, in the form of an extremely diffuse hydrogen
gas. My friend and mentor at Cambridge, the cosmologist Dennis Sciama,
from whom I learnt the thrill of so much new physics, was at that time
a strong proponent of steady-state cosmology, and he impressed upon
me the beauty and power of that remarkable scheme of things.

Yet this theory has not stood the test of time. About 10 years after I
had first entered Cambridge, and had become well acquainted with the
theory, Arno Penzias and Robert Wilson discovered, to their own surprise,
an all-pervading electromagnetic radiation, coming in from all direc-
tions, now referred to as the cosmic microwave background or CMB.
This was soon identified, by Robert Dicke, as a predicted implication
of the ‘flash’ of a Big-Bang origin to the universe, now presumed to
have taken place some 14 thousand million years ago—an event that
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had been first seriously envisaged by Monsignor Georges Lemaitre in
1927, as an implication of his work on Einstein’s 1915 equations of
general relativity and early observational indications of an expansion
of the universe. With great courage and scientific honesty (when the
CMB data became better established), Dennis Sciama publicly repudi-
ated his earlier views and strongly supported the idea of the Big Bang
origin to the universe from then on.

Since that time, cosmology has matured from a speculative pursuit
into an exact science, and intense analysis of the CMB—coming from
highly detailed data, generated by numerous superb experiments—has
formed a major part of this revolution. However, many mysteries remain,
and much speculation continues to be part of this endeavour. In this
book, I provide descriptions not only of the main models of classical
relativistic cosmology but also of various developments and puzzling
issues that have arisen since then. Most particularly, there is a profound
oddness underlying the Second Law of thermodynamics and the very
nature of the Big Bang. In relation to this, I am putting forward a body
of speculation of my own, which brings together many strands of different
aspects of the universe we know.

My own unorthodox approach dates from the summer of 2005,
though much of the detail is more recent. This account goes seriously
into some of the geometry, but I have refrained from including, in the
main body of the text, anything serious in the way of equations or
other technicalities, all these being banished to the Appendices. The
experts, only, are referred to those parts of the book. The scheme that
I am now arguing for here is indeed unorthodox, yet it is based on
geometrical and physical ideas which are very soundly based. Although
something entirely different, this proposal turns out to have strong
echoes of the old steady-state model!

I wonder what Dennis Sciama would have made of it.
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Prologue

WiTH his eyelids half closed, as the rain pelted down on him and the
spray from the river stung his eyes, Tom peered into the swirling torrents
as the water rushed down the mountainside. “Wow’, he said to his Aunt
Priscilla, an astrophysics professor from the University of Cambridge,
who had taken him to this wonderful old mill, preserved in excellent
working order, ‘is it always like this? No wonder all that old machinery
can be kept buzzing around at such great speed.’

‘I don’t think it’s always this energetic’, said Priscilla, standing next
to him behind the railing at the side of the river, and raising her voice
somewhat, so as to be heard over the noise of the rushing water. “The
water’s much more violent than usual, today, because of all this wet
weather. You can see down there that a good portion of the water has
had to be diverted away from the mill. Usually they would not do this,
because they would have to make the most of a much more sedate
flow. But now there’s far more energy in the flow than is needed for
the mill.’

Tom stared for some minutes into the wildly tumbling water and
admired the patterns it made as it was flung into the air in sprays and
convoluted surfaces. ‘I can see there’s a lot of power in that water,
and I know that a couple of centuries ago the people were clever enough
to see how all this energy could be used to drive these machines—
doing the work of many human beings and making all that great woollen
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cloth. But where did the energy come from that got all that water high
up on the mountain in the first place?’

‘The heat of the Sun caused the water in the oceans to evaporate and
rise up into the air, so it would eventually come back down again in all
this rain. So a good proportion of the rain would be deposited up high
into the mountains’, replied Priscilla. ‘It’s really the energy from the Sun
that is being harnessed to run the mill.’

Tom felt a little puzzled by this. He was often puzzled by the things
that Priscilla told him, and was by nature often quite sceptical. He could
not really see how just heat could lift water up into the air. And if there
was all that heat around, why did he feel so cold now? ‘It was rather
hot yesterday’, he grudgingly agreed. Though, still uneasy, he commented,
‘but I didn’t feel the Sun trying to lift me up into the air then, any more
than I do now.’

Aunt Priscilla laughed. ‘No. it’s not really like that. It’s the tiny little
molecules in the water in the oceans that the Sun’s heat causes to be
more energetic. So these molecules then rush randomly around faster
than they would otherwise, and a few of these “hot” molecules will move
so fast that they break loose from the surface of the water and are flung
into the air. And although there are only a relatively few molecules flung
out at one time, the oceans are so vast that there would really be a lot
of water flung up into the air altogether. These molecules go to make
the clouds and eventually the water molecules fall down again as rain,
a lot of which falls high in the mountains.’

Tom was still rather troubled, but at least the rain had now tapered
off somewhat. ‘But this rain doesn’t feel at all hot to me.’

‘Think of the Sun’s heat energy first getting converted into the energy
of rapid random motion of the water molecules. Then think of this rapid
motion resulting in a small proportion of the molecules going so fast
that they are flung high in the air in the form of water vapour. The energy
of these molecules gets converted into what’s called gravitational poten-
tial energy. Think of throwing a ball up into the air. The more energet-
ically you throw it the higher it goes. But when it reaches its maximum
height, it stops moving upwards. At that point its energy of motion has
all been converted into this gravitational potential energy in its height

2



Prologue

above the ground. It’s the same with the water molecules. Their energy
of motion—the energy that they got from the Sun’s heat—is converted
into this gravitational potential energy, now at the top of the mountain,
and when it runs down, this is converted back again into the energy in
its motion, which is used to run the mill.’

‘So the water isn’t hot at all when it’s up there?’ asked Tom.

‘Exactly, my dear. By the time that these molecules get very high in
the sky, they slow down and often actually get frozen into tiny ice crys-
tals—that’s what most clouds are made of—so the energy goes into their
height above the ground rather than into their heat motion. Accordingly,
the rain won’t be hot at all up there, and it’s still quite cold even when
it finally works its way down again, slowed down by the resistance of
the air.’

‘That’s amazing!’

‘Yes, indeed’, and encouraged by the boy’s interest, Aunt Priscilla
eagerly took advantage of the opportunity to say more. ‘You know, it’s
a curious fact that even in the cold water in this river there is still much
more heat energy in the motion of the individual molecules running
around randomly at great speed than there is in the swirling currents of
water rushing down the mountainside!’

‘Goodness. I'm supposed to believe that, am 1?7

Tom thought for a few minutes, somewhat confused at first, but then
rather attracted by what Priscilla said, remarked excitedly: ‘Now you’ve
given me a great idea! Why don’t we build a special kind of mill that
just directly uses all that energy of the motion of water molecules in
some ordinary lake? It could use lots of tiny little windmill things, maybe
like those things that spin in the wind, with little cups on the ends so
that they twirl round in the wind no matter which direction the wind is
coming from. Only they’d be very tiny and in the water, so that the speed
of the water molecules would spin them around, and you could use these
to convert the energy in the motion in the water molecules to drive all
sorts of machinery.’

‘What a wonderful idea, Tom darling, only unfortunately it wouldn’t
work! That’s because of a fundamental physical principle known as the
Second Law of thermodynamics, which more or less says that things
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just get more and more disorganized as time goes on. More to the point,
it tells you that you can’t get useful energy out of the random motions
of a hot—or cold—body, just like that. I'm afraid what you’re suggesting
is what they call a “Maxwell’s demon”.’

‘Don’t you start doing that! You know that Grandpa always used to
call me a “little demon” whenever I had a good idea, and I didn’t like
it. And, that Second Law thing’s not a very nice kind of law’, Tom
complained grumpily. Then his natural scepticism returned: ‘And I'm
not sure I can really believe in it anyway.” Then he continued ‘I think
laws like that just need clever ideas to get around them. In any case, |
thought you said that it’s the heat of the Sun that’s responsible for heating
the oceans and that it’s that random energy of motion that flings it to
the top of the mountain, and that’s what’s running the mill.’

‘Yes, you're right. So the Second Law tells us that actually the heat
of the Sun all by itself wouldn’t work. In order to work, we also need
the colder upper atmosphere, so that the water vapour can condense up
above the mountain. In fact, the Earth as a whole doesn’t get energy
from the Sun overall.’

Tom looked at his aunt with a quizzical expression. ‘“What does the
cold upper atmosphere have to do with it? Doesn’t “cold” mean not so
much energy as “hot”? How does a bit of “not-so-much energy” help?
I don’t get what you are saying at all. Anyway, I think you are contra-
dicting yourself’, said Tom, gaining confidence in himself. ‘First you
tell me that the Sun’s energy runs the mill, and now you tell me that the
Sun doesn’t give energy to the Earth after all!’

‘Well, it doesn’t. If it did, then the Earth would just keep on getting
hotter and hotter as it gained energy. The energy that the Earth gets from
the Sun in the daytime has all to go back into space eventually, which
it does because of the cold night sky—except, I suppose, that with global
warming, a little part of it does get held back by the Earth. It’s because
the Sun is a very hot spot in an otherwise cold dark sky . ..

Tom began to lose the thread of what she was saying and his mind
began to wander. But he heard her say, ‘. . . so it’s the manifest organ-
ization in the Sun’s energy that enables us to keep the Second Law at
bay.’

4
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Tom looked at Aunt Priscilla, almost totally bemused. ‘I don’t think
I really understand all that, he said, ‘and I don’t see why I need to
believe that “Second Law” thing in any case. Anyway, where does all
that organization in the Sun come from? Your Second Law should be
telling us that the Sun’s getting more disorganized as time goes on, SO
it would have to have been enormously organized when it was first
formed, since all the time it’s sending out organization. Your “Second
Law” thing tells us that its organization keeps getting lost.’

‘It has to do with the Sun being such a hot spot in a dark sky. This
extreme temperature imbalance provided the needed organization.’

Tom stared at Aunt Priscilla, with little comprehension, and now not
really properly believing anything she was telling him. ‘You tell me that
counts as organization; well, I don’t see why it should. All right, let’s
pretend it somehow does—but then you still haven’t told me where that
funny kind of organization comes from.’

‘From the fact that the gas that the Sun condensed from was previ-
ously spread uniformly, so that gravity could cause it to form clumps
which condensed gravitationally into stars. A very long time ago, the
Sun did just this; it condensed from this initially spread-out gas, getting
hotter and hotter in the process.’

“You'll keep telling me one thing after another, going way back in
time, but where does this thing you call “organization”, whatever it is,
originally come from?’

‘Ultimately it comes from the Big Bang, which was what started the
whole universe off with an utterly stupendous explosion.’

‘A thing like a big walloping explosion doesn’t sound like something
organized. I don’t get it at all.’

“You aren’t the only one! You’re in good company not to get it. Nobody
really gets it. It’s one of the biggest puzzles of cosmology where the
organization comes from, and in what way the Big Bang really repre-
sents organization in any case.’

‘Maybe there was something more organized before the Big Bang?
That might do it.

‘People have actually tried suggesting things like that for some while.
There are theories in which our presently expanding universe had a

5
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previous collapsing phase which “bounced” to become our Big Bang.
And there are other theories where little bits of a previous phase of the
universe collapsed into things we call black holes, and these bits
“bounced”, to become the seeds of lots and lots of new expanding
universes, and there are others where new universes sprang out of things
called “false vacuums”. .

‘That all sounds pretty crazy to me,” Tom said.

‘And, oh yes, there’s another theory that I heard about recently . . .
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1.1 The relentless march of randomness

THE Second Law of thermodynamics—what law is this? What is its
central role in physical behaviour? And in what way does it present us
with a genuinely deep mystery? In the later sections of this book, we
shall try to understand the puzzling nature of this mystery and why we
may be driven to extraordinary lengths in order to resolve it. This will
lead us into unexplored areas of cosmology, and to issues which I believe
may be resolved only by a very radical new perspective on the history
of our universe. But these are matters that will be our concern later. For
the moment let us restrict our attention to the task of coming to terms
with what is involved in this ubiquitous law.

Usually when we think of a ‘law of physics’ we think of some
assertion of equality between two different things. Newton’s second
law of motion, for example, equates the rate of change of momentum
of a particle (momentum being mass times velocity) with the total
force acting upon it. As another example, the law of conservation of
energy asserts that the total energy of an isolated system at one time
is equal to its total energy at any other time. Likewise, the law of
conservation of electric charge, of momentum, and of angular
momentum, each asserts a corresponding equality for the total elec-
tric charge, for the total momentum, and for total angular momentum.
Einstein’s famous law E=mc? asserts that the energy of a system is
always equal to its mass multiplied by the square of the speed of light.

11



1.1 Cycles of Time

As yet another example, Newton’s third law asserts that the force
exerted by a body A on a body B, at any one time, is always equal
and opposite to the force acting on A due to B. And so it is for many
of the other laws of physics.

These are all equalities—and this applies also to what is called the
First Law of thermodynamics, which is really just the law of conser-
vation of energy again, but now in a thermodynamic context. We say
‘thermodynamic’ because the energy of the thermal motions is now
being taken into account, i.e. of the random motions of individual
constituent particles. This energy is the heat energy of a system, and
we define the system’s femperature to be this energy per degree of
freedom (as we shall be considering again later). For example, when
the friction of air resistance slows down a projectile, this does not
violate the full conservation law of energy (i.e. the First Law of ther-
modynamics)—despite the loss of kinetic energy, due to the projec-
tile’s slowing—because the air molecules, and those in the projectile,
become slightly more energetic in their random motions, from heating
due to the friction.

However, the Second Law of thermodynamics is not an equality,
but an inequality, asserting merely that a certain quantity referred to
as the entropy of an isolated system—which is a measure of the
system’s disorder, or ‘randomness’—is greater (or at least not smaller)
at later times than it was at earlier times. Going along with this
apparent weakness of statement, we shall find that there is also certain
vagueness or subjectivity about the very definition of the entropy of
a general system. Moreover, in most formulations, we are led to
conclude that there are occasional or exceptional moments at which
the entropy must be regarded as actually (though temporarily) reducing
with time (in a fluctuation) despite the general trend being that the
entropy increases.

Yet, set against this seeming imprecision inherent in the Second
Law (as I shall henceforth abbreviate it), this law has a universality
that goes far beyond any particular system of dynamical rules that
one might be concerned with. It applies equally well, for example,
to relativity theory as it does to Newtonian theory, and also to the
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The Second Law and its Underlying Mystery 1.1

continuous fields of Maxwell’s theory of electromagnetism (that we
shall be coming to briefly in §2.6, §3.1 and §3.2, and rather more
explicitly in Appendix A1) just as well as it does to theories involving
only discrete particles. It applies also to hypothetical dynamical theo-
ries that we have no good reason to believe have relevance to the
actual universe that we inhabit, although it is most pertinent when
applied to realistic dynamical schemes, such as Newtonian mechanics,
which have a deterministic evolution and are reversible in time, so
that for any allowed evolution into the future, reversing the time direc-
tion gives us another equally allowable evolution according to the
dynamical scheme.

To put things in familiar terms, if we have a moving-picture film
depicting some action that is in accordance with dynamical laws—such
as Newton’s—that are reversible in time, then the situation depicted when
the film is run in reverse will also be in accordance with these dynam-
ical laws. The reader might well be puzzled by this, for whereas a film
depicting an egg rolling off a table, falling to the ground, and smashing
would represent an allowable dynamical process, the time-reversed film—
depicting the smashed egg, originally as a mess on the floor, miracu-
lously assembling itself from the broken pieces of shell, with the yolk
and albumen separately joining up to become surrounded by the self-
assembling shell, and then jumping up on to the table—is not an occur-
rence that we expect ever to see in an actual physical process (Fig. 1.1).
Yet the full Newtonian dynamics of each individual particle, with its
accelerated response (in accordance with Newton’s second law) to all
forces acting upon it, and the elastic reactions involved in any collision
between constituent particles, is completely reversible in time. This also
would be the case for the refined behaviour of relativistic and quantum-
mechanical particles, according to the standard procedures of modern
physics—although there are some subtleties arising from the black-hole
physics of general relativity, and also with regard to quantum mechanics,
that I do not wish to get embroiled in just yet. Some of these subtleties
will actually be crucially important for us later, and will be considered
particularly in §3.4. But for the moment, an entirely Newtonian picture
of things will suffice.

13
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Fig. 1.1 An egg rolling off a table, falling to the ground and smashing according
to time-reversible dynamical laws.

We have to accustom ourselves to the fact that the situations that are
depicted by both directions of film-running are consistent with Newtonian
dynamics, but the one showing the self-assembling egg depicts an occur-
rence that is inconsistent with the Second Law, and would be such an
enormously improbable sequence of events that we can simply reject it
as a realistic possibility. What the Second Law indeed states, roughly
speaking, is that things are getting more ‘random’ all the time. So if we
set up a particular situation, and then let the dynamics evolve it into the
future, the system will evolve into a more random-looking state as time
progresses. Strictly, we should not say that it will evolve into a more
random-looking state but that, in accordance with what has been said
above, it is (something like) overwhelmingly likely to evolve into such
a more random state. In practice, we must expect that, according to the
Second Law, things are indeed getting progressively more and more
random with time, but that this represents merely an overwhelming prob-
ability, not quite an absolute certainty.

Nevertheless we can assert, with a considerable amount of confi-
dence, that what we shall experience will be an entropy increase—in
other words an increase in randomness. Stated that way, the Second
Law sounds perhaps like a council of despair, for it tells us that things
are just getting more and more disorganized as time progresses. This
does not sound like any kind of a mystery, however, as the title of Part
1 seems to be suggesting that it should. It’s just an obvious feature of

14



The Second Law and its Underlying Mystery 1.1

the way things would behave if left entirely to themselves. The Second
Law appears to be just expressing an inevitable and perhaps depressing
feature of everyday existence. Indeed, from this point of view, the
Second Law of thermodynamics is one of the most natural things imag-
inable, and certainly something that reflects a completely common-
place experience.

Some might worry that the emergence of life on this Earth, with its
seemingly unbelievable sophistication, represents a contradiction with
this increase of disorder that the Second Law demands. I shall be
explaining later (see §2.2) why there is in fact no contradiction. Biology
is, as far as we know, entirely consistent with the overall entropy increase
that the Second Law demands. The mystery referred to in the title of
Part 1 is a mystery of physics of an entirely different order of scale.
Although it has some definite relation to that mysterious and puzzling
organization that we are continually being presented with through biology,
we have good reason to expect that the latter presents no paradox with
regard to the Second Law.

One thing should be made clear, however, with regard to the Second
Law’s physical status: it represents a separate principle that must be
adjoined to the dynamical laws (e.g. to Newton’s laws), and is not to be
regarded as a deduction from them. The actual definition of the entropy
of a system at any one moment is, however, symmetrical with regard to
the direction of time (so we get the same entropy definition, for our
filmed falling egg, at any one moment, irrespective of the direction in
which the film is shown), and if the dynamical laws are also symmet-
rical in time (as is indeed the case with Newtonian dynamics), the entropy
of a system being not always constant in time (as is clearly so with the
smashing egg), then the Second Law cannot be a deduction from these
dynamical laws. For if the entropy is increasing in a particular situation
(e.g. egg smashing), this being in accordance with the Second Law, then
the entropy must be decreasing in the reversed situation (egg miracu-
lously assembling), which is in gross violation of the Second Law. Since
both processes are nevertheless consistent with the (Newtonian) dynamics,
we conclude that the Second Law cannot simply be a consequence of
the dynamical laws.

15



1.2 Entropy, as state counting

But how does the physicist’s notion of ‘entropy’, as it appears in
the Second Law, actually guantify this ‘randomness’, so that the self-
assembling egg can indeed be seen to be overwhelmingly improbable,
and thereby rejected as a serious possibility? In order to be a bit more
explicit about what the entropy concept actually is, so that we can make
a better description of what the Second Law actually asserts, let us
consider a physically rather simpler example than the breaking egg. The
Second Law tells us, for example, that if we pour some red paint into a
pot and then some blue paint into the same pot and give the mixture a
good stir, then after a short period of such stirring the different regions
of red and of blue will lose their individuality, and ultimately the entire
contents of the pot will appear to have the colour of a uniform purple.
It seems that no amount of further stirring will convert the purple colour
back to the original separated regions of red and blue, despite the time-
reversibility of the submicroscopic physical processes underlying the
mixing. Indeed, the purple colour should eventually come about spon-
taneously, even without the stirring, especially if we were to warm the
paint up a little. But with stirring, the purple state is reached much more
quickly. In terms of entropy, we find that the original state, in which
there are distinctly separated regions of red and blue paint, will have a
relatively low entropy, but that the pot of entirely purple paint that we
end up with will have a considerably larger entropy. Indeed, the whole
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The Second Law and its Underlying Mystery 1.2

stirring procedure provides us with a situation that is not only consis-
tent with the Second Law, but which begins to give us a feeling of what
the Second Law is all about.

Let us try to be more precise about the entropy concept, so that we
can be more explicit about what is happening here. What actually is the
entropy of a system? Basically, the notion is a fairly elementary one,
although involving some distinctly subtle insights, due mainly to the
great Austrian physicist Ludwig Boltzmann, and it has to do just with
counting the different possibilities. To make things simple, let us idealize
our pot of paint example so that there is just a (very large) finite number
of different possibilities for the locations of each molecule of red paint
or of blue paint. Let us think of these molecules as red balls or blue
balls, these being allowed to occupy only discrete positions, centred
within N? cubical compartments, where we are thinking of our paint pot
as an enormously subdivided Nx NxN cubical crate composed of these
compartments (see Fig. 1.2), where I am assuming that every compart-
ment is occupied by exactly one ball, either red or blue (represented as
white and black, respectively, in the figure).
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Fig. 1.2 NXNXxN cubical crate, each compartment containing a red or blue ball.

To judge the colour of the paint at some place in the pot, we make
some sort of average of the relative density of red balls to blue balls in
the neighbourhood of the location under consideration. Let us do this
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1.2 Cycles of Time

by containing that location within a cubical box that is much smaller
than the entire crate, yet very large as compared with the individual
cubical compartments just considered. I shall suppose that this box
contains a large number of the compartments just considered, and belongs
to a cubical array of such boxes, filling the whole crate in a way that is
less refined than that of the original compartments (Fig. 1.3). Let us
suppose that each box has a side length that is n times as great as that
of the original compartments, so that there are nxnxn=n* compartments
in each box. Here n, though still very large, is to be taken to be far
smaller than N:

N>»n>»1.
To keep things neat, I suppose that N is an exact multiple of n, so that
N=kn

where k is a whole number, giving the number of boxes that span
the crate along each side. There will now be kxkxk=k> of these
intermediate-sized boxes in the entire crate.

1

THTT

€
[éﬁ“//f,‘f/%#

box

crate\

compartment
with red or blue ball

Fig. 1.3 The compartments are grouped together into k* boxes, each of size
nxXnxn.

The idea will be to use these intermediate boxes to provide us with
a measure of the ‘colour’ that we see at the location of that box, where

18



The Second Law and its Underlying Mystery 1.2

the balls themselves are considered to be too small to be seen individ-
ually. There will be an average colour, or hue that can be assigned to
each box, given by ‘averaging’ the colours of the red and blue balls
within that box. Thus, if r is the number of red balls in the box under
consideration, and b the number of blue balls in it (so r+b=n?), then
the hue at that location is taken to be defined by the ratio of r to b.
Accordingly, we consider that we get a redder hue if #/b is larger than
1 and a bluer hue if r/b is smaller than 1.

Let us suppose that the mixture /ooks to be a uniform purple to us if
every one of these nxnxn compartments has a value of /b that is between
0.999 and 1.001 (so that r and b are the same, to an accuracy of one tenth
of a per cent). This may seem, at first consideration, to
be a rather stringent requirement (having to apply to every individual
nxnxn compartment). But when n gets very large, we find that the vast
majority of the ball arrangements do satisfy this condition! We should
also bear in mind that when considering molecules in a can of paint, the
number of them will be staggeringly large, by ordinary standards. For
example, there could well be something like 10** molecules in an ordin-
ary can of paint, so taking N=10® would not be at all unreasonable. Also,
as will be clear when we consider that colours look perfectly good in
digitally displayed photographs with a pixel size of only 10 cm, taking
a value of k=10° is also very reasonable, in this model. From this, we
find that, with these numbers (N=10% and k=10° so n=10%) there are
around 1()?3370000000000000000000000 djfferent arrangements of the entire collec-
tion of ¥2N? red balls and ¥2N? blue balls that give the appearance of a
uniform purple. There are only a mere 1(0#30000000000 different arrange-
ments which give the original configuration in which the blue is entirely
at the top and the red entirely at the bottom. Thus, for balls distributed
entirely at random, the probability of finding uniform purple is a virtual
certainty, whereas the probability of finding all the blue ones at the top
is something like 1(~23570000000000000000000000 (and this figure is not substan-
tially changed if we do not require ‘all’ the blue balls to be initially at
the top but, say, only 99.9% of them to be at the top).

We are to think of the ‘entropy’ to be something like a measure of
these probabilities or, rather, of these different numbers of arrangements
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1.2 Cycles of Time

that give the same ‘overall appearance’. Actually, to use these numbers
directly would give an exceedingly unruly measure, owing to their vast
differences in size. It is fortunate, therefore, that there are good theo-
retical reasons for taking the (natural) logarithm of these numbers as a
more appropriate ‘entropy’ measure. For those readers who are not very
familiar with the notion of a logarithm (especially a ‘natural’ logarithm),
let us phrase things in terms of the logarithm taken to the base 10—
referred to here as ‘logio’ (rather than the natural logarithm, used later,
which I refer to simply as ‘log’). To understand logio, the basic thing to
remember is that

logio 1=0, logio 10=1, logio 100=2, logio 1000=3, logio 10000=4, etc.

That is, to obtain the logio of a power of 10, we simply count the number
of 0s. For a (positive) whole number that is not a power of 10, we can
generalize this to say that the integral part (i.e. the number before the
decimal point) of its logio is obtained by counting the total number of
digits and subtracting 1, e.g. (with the integral part printed in bold type)

logio 2=0.30102999566 . . .
logio 53=1.72427586960 . . .
logio 9140=3.96094619573 . . .

etc., so in each case the number in bold type is just one less than the
number of digits in the number whose logio is being taken. The most
important property of logio (or of log) is that it converts multiplication
to addition; that is:

10g10 (ab)=10g10 a+log10 b.

(In the case when a and b are both powers of 10, this is obvious from
the above, since multiplying a=10* by b=10% gives us ab=105.)
The significance of the above displayed relation to the use of the loga-
rithm in the notion of entropy is that we want the entropy of a system
which consists of two separate and completely independent components
to be what we get by simply adding the entropies of the individual parts.
We say that, in this sense, the entropy concept is additive. Indeed, if the
first component can come about in P different ways and the second
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component in Q different ways, then there will be the product PQ of
different ways in which the entire system—consisting of both compo-
nents together—can come about (since to each of the P arrangements
giving the first component there will be exactly Q arrangements giving
the second). Thus, by defining the entropy of the state of any system to
be proportional to the logarithm of the number of different ways that
that state can come about, we ensure that this additivity property, for
independent systems, will indeed be satisfied.

I have, however, been a bit vague, as yet, about what I mean by this
‘number of ways in which the state of a system can come about’. In the
first place, when we model the locations of molecules (in a can of paint,
say), we would normally not consider it realistic to have discrete compart-
ments, since in Newtonian theory there would, in full detail, be an infi-
nite number of different possible locations for each molecule rather than
just a finite number. In addition, each individual molecule might be of
some asymmetrical shape, so that it could be oriented in space in different
ways. Or it might have other kinds of internal degrees of freedom, such
as distortions of its shape, which would have to be correspondingly taken
into account. Each such orientation or distortion would have to count as
a different configuration of the system. We can deal with all these points
by considering what is known as the configuration space of a system,
which I next describe.

For a system of d degrees of freedom, the configuration space would
be a d-dimensional space. For example, if the system consisted of ¢ point
particles p1,p»,... ,pq (€ach without any internal degrees of freedom), then
the configuration space would have 3¢ dimensions. This is because each
individual particle requires just three coordinates to determine its posi-
tion, so there are 3¢ coordinates overall, whereby a single point P of
configuration space defines the locations of all of pi,p»,... ,p, together
(see Fig. 1.4). In more complicated situations, where there are internal
degrees of freedom as above, we would have more degrees of freedom
for each such particle, but the general idea is the same. Of course, I am
not expecting the reader to be able to ‘visualize’ what is going on in a
space of such a high number of dimensions. This will not be necessary.
We shall get a good enough idea if we just imagine things going on in
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1.2 Cycles of Time

a space of just 2 dimensions (such as a region drawn on a piece of paper)
or of some region in ordinary 3-dimensional space, provided that we
always bear in mind that such visualizations will inevitably be limited
in certain ways, some of which we shall be coming to shortly. And of
course we should always keep in mind that such spaces are purely abstract
mathematical ones which should not be confused with the 3-dimensional
physical space or 4-dimensional physical space-time of our ordinary
experiences.

//V - A
g _ \L “ configuration space C of
% X ~ q point part_icles PL P2y Pe
\Q] \ .P} is a 3g-dimensional space
Xq \\/

Fig.14 Configuration space C of g point particles pi,pa,... ,p, is a 3g-dimensional
space.

There is a further point that needs clarification, in our attempts at a
definition of entropy, and this is the issue of what exactly we are trying
to count. In the case of our finite model, we had finite numbers of
different arrangements for the red and blue balls. But now we have an
infinite number of arrangements (since the particle locations require
continuous parameters), and this leads us to consider high-dimensional
volumes in configuration space, to provide us with an appropriate measure
of size, instead of just counting discrete things.
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To get an idea of what is meant by a ‘volume’ in a high-dimensional
space, it is a good idea first to think of lower dimensions. The ‘volume-
measure’ for a region of 2-dimensional curved surface, for example,
would be simply the measure of surface area of that region. In the case
of a 1-dimensional space, we are thinking simply of the length along
some portion of a curve. In an n-dimensional configuration space, we
would be thinking in terms of some n-dimensional analogue of the volume
of an ordinary 3-volume region.

But which regions of configuration space are we to be measuring the
volumes of, when we are concerned with the entropy definition? Basically,
what we would be concerned with would be the volume of that entire
region in configuration space that corresponds to the collection of states
which ‘look the same’ as the particular state under consideration. Of course,
‘look the same’ is a rather vague phrase. What is really meant here is that
we have some reasonably exhaustive collection of macroscopic parame-
ters which measure such things as density distribution, colour, chemical
composition, but we would not be concerned with such detailed matters
as the precise locations of every atom that constitutes the system under
consideration. This dividing up of the configuration space C into regions
that ‘look the same’ in this sense is referred to as a ‘coarse graining’ of
C. Thus, each ‘coarse-graining region’ consists of points that represent
states that would be considered to be indistinguishable from each other,
by means of macroscopic measurements. See Fig. 1.5.

differing detailed
configurations that
appear to be
microscopically
identical are
represented in the
same coarse-graining
region

Fig. 1.5 A coarse-graining of C.
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Of course, what is meant by a ‘macroscopic’ measurement, is still
rather vague, but we are looking for some kind of analogue of the ‘hue’
notion that we were concerned with above in our simplified finite model
for the can of paint. There is admittedly some vagueness in such a ‘coarse-
graining’ notion, but it is the volume of such a region in configuration
space—or, rather, the logarithm of the volume of such a coarse-graining
region—that we are concerned with in the definition of entropy. Yes, this
is still a bit vague, but it is remarkable how robust the entropy notion
turns out to be, nevertheless, mainly due to the absolutely stupendous
ratios of volumes that the coarse-graining volumes turn out to have.
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1.3 Phase space, and
Boltzmann’s definition of entropy

We are still not finished with the definition of entropy, however, for what
has been said up to this point only half addresses the issue. We can see an
inadequacy in our description so far by considering a slightly different
example. Rather than having a can of red and blue paint, we might consider
a bottle which is half filled with water and half with olive oil. We can stir
it as much as we like, and also shake the bottle vigorously. But in a few
moments, the olive oil and the water will separate out, and we soon have
just olive oil at the top half of the bottle and water at the bottom half. The
entropy has been increasing all the time throughout the separation process,
nevertheless. The new point that arises here is that there is a strong mutual
attraction between the molecules of olive oil which causes them to aggre-
gate, thereby expelling the water. The notion of mere configuration space
is not adequate to account for the entropy increase in this kind of situ-
ation, as we really need to take into account the motions of the individual
particles/molecules, not just of their locations. Their motions will be neces-
sary for us, in any case, so that the future evolution of the state is deter-
mined, according to the Newtonian laws that we are assuming to be operative
here. In the case of the molecules in the olive oil, their strong mutual attrac-
tion causes their velocities to increase (in vigorous orbital motions about
one another) as they get closer together, and it is the ‘motion’ part of the
relevant space which provides the needed extra volume (and therefore extra
entropy) for the situations where the olive oil is collected together.
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1.3 Cycles of Time

The space that we need, in place of the configuration space C described
above, is what is called phase space. The phase space P has twice as
many dimensions (!) as C, and each position coordinate for each
constituent particle (or molecule) must have a corresponding ‘motion’
coordinate in addition to that position coordinate (see Fig. 1.6). We
might imagine that the appropriate such coordinate would be a measure
of velocity (or angular velocity, in the case of angular coordinates
describing orientation in space). However, it turns out (because of deep
connections with the formalism of Hamiltonian theory") that it is the
momentum (or angular momentum, in the case of angular coordinates)
that we shall require in order to describe the motion. In most familiar
situations, all we need to know about this ‘momentum’ notion is that it
is the mass times the velocity (as already mentioned in §1.1). Now the
(instantaneous) motions, as well as the positions, of all the particles
composing our system are encoded in the location of a single point p
in P. We say that the state of our system is described by the location
of p within 2.

q point particles

6q dimensions

N
//Z -t~ momentum: 3 numbers
<€~~~ position: 3 numbers
| y
\ \L> 99) P
N .

——

Fig. 1.6 The phase space P has twice as many dimensions as C.

For the dynamical laws that we are considering, governing the behav-
iour of our system, we may as well take them to be Newton’s laws of
motion, but we can also treat more general situations (such as with the
continuous fields of Maxwell’s electrodynamics; see §2.6, §3.1, §3.2,
and Appendix A1), which also come under the broad Hamiltonian frame-
work (referred to above). These laws are deterministic in the sense that
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the state of our system at any one time completely determines the state
at any other time, whether earlier or later. To put things another way,
we can describe the dynamical evolution of our system, according to
these laws as a point p which moves along a curve—-called an evolution
curve—in the phase space P. This evolution curve represents the unique
evolution of the entire system according to the dynamical laws, starting
from the initial state, which we can represent by some particular point
po in the phase space P. (See Fig. 1.7.) In fact, the whole phase space
P will be filled up (technically foliated) by such evolution curves (rather
like a bale of straw), where every point of P will lie on some particular
evolution curve. We must think of this curve as being oriented—which
means that we must assign a direction to the curve, and we can do this
by putting an arrow on it. The evolution of our system, according to the
dynamical laws, is described by a moving point p, which travels along
the evolution curve—in this case starting from the particular point po—
and moves in the direction in which the arrow points. This provides us
with the future evolution of the particular state of the system represented
by p. Following the evolution curve in the direction away from po in the
opposite direction to the arrow gives the time-reverse of the evolution,
this telling us how the state represented by po would have arisen from
states in the past. Again, this evolution would be unique, according to
the dynamical laws.

curve % equal

volumes

Fig. 1.7 Point p moves along an evolution curve in the phase space P.
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One important feature of phase space is that, since the advent of
quantum mechanics, we find that it has a natural measure, so that we
can take volumes in phase space to be, essentially, just dimensionless
numbers. This is important, because Boltzmann’s entropy definition, that
we shall come to shortly, is given in terms of phase-space volumes, so
we need to be able to compare high-dimensional volume measures with
each other, where the dimensions may differ very greatly from one to
another. This may seem strange from the point of view of ordinary clas-
sical (i.e. non-quantum) physics, since in ordinary terms we would think
of the length of a curve (a 1-dimensional ‘volume’) as always having a
smaller measure than the area of a surface (a 2-dimensional ‘volume’),
and a surface area as being of smaller measure than a 3-volume, etc. But
the measures of phase-space volumes that quantum theory tells us to use
are indeed just numbers, as measured in units of mass and distance that
give us h=1, the quantity

h=—
2
being Dirac’s version of Planck’s constant (sometimes called the ‘reduced’
Planck’s constant), where h is the original Planck’s constant. In stan-
dard units, & has the extremely tiny value

h =1.05457. . .x107* Joule seconds,

so the phase-space measures that we encounter in ordinary circumstances
tend to have exceedingly large numerical values.

Thinking of these numbers as being just integers (whole numbers) gives
a certain ‘granularity’ to phase space, and this provides the discreteness
of the ‘quanta’ of quantum mechanics. But in most ordinary circumstances
these numbers would be huge, so the granularity and discreteness is not
noticed. An exception arises with the Planck black-body spectrum that we
shall be coming to in §2.2 (see Fig. 2.6 and note 1.2), this being the
observed phenomenon that Max Planck’s theoretical analysis explained,
in 1900, thereby launching the quantum revolution. Here one must consider
an equilibrium situation simultaneously involving different numbers of
photons, and therefore phase spaces of different dimensions. The proper
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discussion of such matters is outside the scope of this book,!*! but we
shall return to the basics of quantum theory in §3.4.

Fig. 1.8 Impression of coarse-graining in higher dimensions.

Now that we have the notion of the phase space of a system, we shall
need to understand how the Second Law operates in relation to it. As
with our discussion of configuration space, above, this will require us to
provide a coarse-graining of P, where two points belonging to the same
coarse-graining region would be deemed to be ‘indistinguishable’ with
regard to macroscopic parameters (such as the temperature, pressure,
density, direction and magnitude of flow of a fluid, colour, chemical
composition, etc.). The definition of the entropy S of a state represented
by a point p in P is now provided by the remarkable Boltzmann formula

S=k"logiwo V,

where V is the volume of the coarse-graining region containing p. The
quantity k£” is a small constant (which would have been Boltzmann’s
constant had I chosen to use a natural logarithm, ‘log’; it is given by
k’=klogl0 (logl0=2.302585 . . .), where k is indeed Boltzmann’s
constant, and k takes the tiny value

k=1.3805 . .. x 107> Joules/degree Kelvin,
s0 k'=3.179 ... x102JK! (see Fig. 1.8). In fact, to be consistent with
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the definitions normally used by physicists, I shall henceforth revert to
natural logarithms, and write Boltzmann’s entropy formula as

S=k logV,

where logV=2.302585 . . .xlogioV.

Before we move on, in §1.4, to explore the reasonableness and impli-
cations of this elegant definition, and how it relates to the Second Law,
we should appreciate one particular issue that is very nicely addressed
by it. Sometimes people (quite correctly) point out that the lowness of
the entropy of a state is not really a good measure of the state’s ‘special-
ness’. If we again consider the situation of the falling egg that was intro-
duced in §1.1, we note that the relatively high-entropy state that is arrived
at when the egg has become a mess on the floor is still an extraordin-
arily special one. It is special because there are some very particular
correlations between the motions of the particles constituting that apparent
‘mess’—of such a nature that if we reverse them all, then that mess will
have the remarkable property that it will rapidly resolve itself into a
perfectly completed egg that projects itself upwards so as to perch itself
delicately on the table above. This, indeed, is a very special state, no
less special than was the relatively low-entropy configuration of the egg
up on the table in the first place. But, ‘special’ as that state consisting
of a mess on the floor undoubtedly was, it was not special in the particu-
lar way that we refer to as ‘low entropy’. Lowness of entropy refers to
manifest speciality, which is seen in special values of the macroscopic
parameters. Subtle correlations between particle motions are neither here
nor there when it comes to the entropy that is to be assigned to the state
of a system.

We see that although some states of relatively high entropy (such as
the time-reversed smashed egg just considered) can evolve to states of
lower entropy, in contradiction with the Second Law, these would repre-
sent a very tiny minority of the possibilities. It may be said that this is
the ‘whole point’ of the notion of entropy and of the Second Law.
Boltzmann’s definition of entropy in terms of the notion of coarse graining
deals with this matter of the kind of ‘specialness’ that is demanded by
low entropy in a very natural and appropriate way.
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One further point is worth making here. There is a key mathematical
theorem known as Liouville’s theorem, which asserts that, for the normal
type of classical dynamical system considered by physicists (the stan-
dard Hamiltonian systems referred to above), the time-evolution preserves
volumes in phase space. This is illustrated in the right-hand part of Fig.
1.7, where we see that if a region of Vo, of volume V, in phase space
P, is carried by the evolution curves to a region V,, after time ¢, then
we find that V, has the same volume V as does Vo. This does not contra-
dict the Second Law, however, because the coarse-graining regions are
not preserved by the evolution. If the initial region Vo happened to be a
coarse-graining region, then V¢ would be likely to be a sprawling messy
volume spreading out through a much larger coarse-graining region, or
perhaps several such regions, at the later time 7.

To end this section, it will be appropriate to return to the important
matter of the use of a logarithm in Boltzmann’s formula, following up
an issue that was briefly addressed in §1.2. The matter will have particu-
lar importance for us later, most especially in §3.4. Suppose that we are
contemplating the physics taking place in our local laboratory, and we
wish to consider the definition of the entropy of some structures involved
in an experiment that we are performing. What would we consider to be
Boltzmann’s definition of entropy relevant to our experiment? We would
take into account all degrees of freedom of concern, in the laboratory,
and use these to define some phase space P. Within P would be the
relevant coarse-graining region V of volume V, giving us our Boltzmann
entropy klogV.

However, we might choose to consider our laboratory as part of a far
larger system, let us say the rest of the entire Milky Way galaxy within
which we reside, where there are enormously many more degrees of
freedom. By including all these degrees of freedom, we find that our
phase space will now be enormously larger than before. Moreover, the
coarse-graining region pertinent to our calculation of entropies within
our laboratory will now also be enormously larger than before, because
it can involve all the degrees of freedom present in the entire galaxy, not
just those relevant to the contents of the laboratory. This is natural,
however, because the entropy value is now that which applies to the

31



1.3 Cycles of Time

galaxy as a whole, the entropy involved in our experiment being only a
small part of this.

Fig. 1.9 The phase space considered by the experimenter is but a small factor of
that which involves all the external degrees of freedom in the galaxy.

The parameters defining the external degrees of freedom (those deter-
mining the state of the galaxy except for those defining the state within
the laboratory) provide us with a huge ‘external’ phase space X, and
there will be a coarse-graining region W within X that characterizes the
state of the galaxy external to the laboratory. See Fig. 1.9. The phase
space G for the entire galaxy will be defined by the complete set of
parameters, both external (providing the space X') and internal (providing
the space P). The space G is called, by mathematicians, the product
space of P with X, written

G=PxX,
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and its dimension will be the sum of the dimensions of P and of X
(because its coordinates are those of P followed by those of X). Figure
1.10 illustrates the idea of a product space, where P is a plane and X
is a line.

X = = :
<
G=PxX

Fig. 1.10 Product space where P is a plane and X is a line.

If we take the external degrees of freedom to be completely inde-
pendent of the internal ones, then the relevant coarse-graining region in
G will be the product

VxW

of the coarse-graining regions V in P and W in X, respectively (see
Fig.1.11). Moreover, the volume element in a product space is taken to
be the product of the volume elements in each of the constituent spaces;
consequently the volume of the coarse-graining region VxW in G will
be the product VW of the volume V of the coarse-graining region V in
P with the volume W of the coarse-graining region W in X. Hence, by
the ‘product-to-sum’ property of the logarithm, the Boltzmann entropy
we obtain is

k log (VW)=k log V+k log W,

which is the sum of the entropy within the laboratory and the entropy
external to the laboratory. This just tells us that entropies of independent
systems just add together, showing that an entropy value is something
that can be assigned to any part of a physical system that is independent
of the rest of the system.
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Fig. 1.11 Coarse-graining region in the product space as a product of coarse-
graining regions in the factors.

In the situation considered here for which P refers to the degrees of
freedom relevant to the laboratory and X to those relevant to the external
galaxy (assumed independent of each other), we find that the entropy
value klogV that the experimenter would assign to the experiment being
performed, if the external degrees of freedom are being ignored, would
differ from the entropy value klog(VW) that would result if these external
degrees of freedom are also taken into consideration, simply by the entropy
value klogW that would be assigned to all the external galactic degrees
of freedom. This external part plays no role for the experimenter and can
therefore be safely ignored for studying the role of the Second Law within
the laboratory itself. However, when in §3.4 we come to consider the
entropy balance of the universe as a whole and, most particularly, the
contribution due to black holes, we shall find that these matters cannot
be ignored, and will acquire a fundamental significance for us!
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Matters concerning the entropy of the entire cosmos can be left aside
for the time being. For the moment, we can just appreciate the value
of Boltzmann’s formula, for it provides us with an excellent notion of
what the entropy of a physical system should be actually defined to be.
Boltzmann put forward this definition in 1875, and it represented an
enormous advance on what had gone before,!” so that it now becomes
possible to apply the entropy concept in completely general situations,
where no assumption need be made, such as the system in question
having to be in some kind of stationary state. There are, nevertheless,
still certain aspects of vagueness in this definition, associated, prima-
rily, with the notion of what is to be meant by a ‘macroscopic param-
eter’. We might, for example, imagine that it will become possible, in
the future, to measure many detailed aspects of the state of a fluid,
where these would today be considered to be ‘unmeasurable’. Rather
than being merely able to determine, say, what the pressure, density,
temperature, and overall fluid velocity might be at various locations of
the fluid, it might become possible in the future to ascertain the motions
of the fluid molecules in a great deal more detail, where we might
perhaps be able even to measure the motions of specific molecules in
the fluid. Accordingly, the coarse-graining of the phase space would
then have to be taken rather more finely that it had been before.
Consequently, the entropy of a particular state of the fluid would be
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considered to be somewhat smaller, as judged in the light of this newer
technology, than it would have been previously.

Some scientists have argued!® that the use of such technology to
ascertain finer details of a system in this way would always entail an
entropy increase in the measuring apparatus which more than compen-
sates the effective entropy reduction that would be ascertained to be
taking place in the system under examination, by virtue of the detailed
measurements. Accordingly, such detailed measurement of a system
would still result in an increase in the entropy overall. This is a very
reasonable point, but even if we take it into account, there is still a
muddying of the Boltzmann entropy definition, as the lack of objectivity
in what constitutes a ‘macroscopic parameter’ for the system as a whole
is hardly clarified by such considerations.

An extreme example of this sort of thing was envisaged by the great
nineteenth-century mathematical physicist James Clark Maxwell (whose
equations for electromagnetism have been referred to earlier; §1.1, §1.3).
Maxwell imagined a tiny ‘demon’ able to direct individual gas mole-
cules one way or another, by opening or closing a little door, thereby
enabling the Second Law, as applied to the gas itself, to be violated. Yet,
to consider the entire system, including the body of Maxwell’s demon
itself, as a single physical entity, the actual sub-microscopic compos-
ition of the demon would have to be brought into the picture, and the
Second Law should be restored once this is done.

In more realistic terms, we might imagine the demon to be replaced
by some minute mechanical device, and we can argue that the Second
Law still holds good for the entire structure. The issue of what consti-
tutes a macroscopic parameter does not seem to me to be properly resolved
by such considerations, however, and the very definition of entropy, for
such a complicated system, remains somewhat enigmatic. It might indeed
seem odd that an apparently well-defined physical quantity like the
entropy of a fluid should be dependent upon the specific state of tech-
nology at the time!

Yet, it is remarkable how little the entropy values that would be assigned
to a system are affected, in a general way, by developments in tech-
nology such as this. The entropy values that would be attributed to a
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system would, on the whole, change very little as a result of redrawing
the boundaries of the coarse-graining regions in this kind of way, as
might result from improved technology. We must indeed bear in mind
that there is likely to be always some measure of subjectivity in the
precise value of the entropy that one might assign to a system, on account
of the precision that might be available in measuring devices at any one
time, but we should not adopt the point of view that the entropy is not
a physically useful concept for that kind of reason. In practice, this
subjectivity will, in normal circumstances, amount to a very small factor.
The reason for this is that the coarse-graining regions tend to have volumes
that are absolutely stupendously different from one another, and the
detailed redrawing of their boundaries will normally make no discernible
difference to the entropy values that are assigned.

To get some feeling for this, let us return to our simplified description
of the mixture of red and blue paint, where we modelled this by consider-
ing 10** compartments, occupied by equal total numbers of red and blue
balls. There, we considered the colour at the various locations to be purple
if the ratio of blue balls in a 10°x 105x 10° cubical crate lay in the range
0.999 to 1.001. Suppose that, instead, by the use of finer precision instru-
ments, we are able to judge the red/blue ratio of the balls at a much finer
scale than before, and much more precisely. Let us suppose that the mixture
is now judged to be uniform only if the ratio of red balls to blue balls is
between 0.9999 and 1.0001 (so that the numbers of red and blue balls are
now to be equal to an accuracy of one hundredth of a per cent), which is
ten times as precise as we had demanded before, and that the region exam-
ined need now only be one half of the dimension—and therefore one
eighth of the volume—that we had had to examine before in order to deter-
mine the hue. Despite this very considerably increased precision, we find
that the ‘entropy’ we must assign to the ‘uniformly purple’ state (‘entropy’
in the sense of the log of the number of states that now satisfy this condi-
tion) hardly changes from the value that we had previously. Consequently,
our ‘improved technology’ makes effectively no difference to the sort of
entropy values that we get in this kind of situation.

This is only a ‘toy model’, however (and a toy model of configur-
ation space rather than phase space) but it serves to emphasize the fact
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that such changes in the precision of our ‘macroscopic parameters’ in
defining the ‘coarse-graining regions’ tend not to make much difference
to the entropy values that are assigned. The basic reason for this entropy
robustness is simply the enormous size of the coarse-graining regions
that we encounter and, more particularly, of the vastness of the ratios of
the sizes of different such regions. To take a more realistic situation, we
might consider the entropy increase that is involved in the commonplace
action of taking a bath! For simplicity, I shall not attempt to place an
estimate on the not inconsiderable raising of entropy that occurs in the
actual cleansing process(!), but I shall concentrate only on what is involved
in the mixing together of the water that emerges from the hot and cold
taps (either in the bath itself or in the interior of a mixer tap which might
be attached to the bath). It would be not unreasonable to suppose that
the hot water emerges at a temperature of around 50°C and the cold,
around 10°C, where the total volume of water that finds itself in the
bath is being taken to be 150 litres (made half from the hot water and
half from the cold). The entropy increase turns out to be about 21407
J/K, which amounts to our point in phase space moving from one coarse-
graining region to another that is about 10>’ times larger! No
reasonable-looking change in precisely where the boundary of the coarse-
graining regions are to be drawn would make any significant impression
on numbers of this scale.

There is another related issue that should be mentioned here. I have
phrased things as though the coarse-graining regions are well defined,
with definite boundaries, whereas strictly speaking this would not be the
case, no matter what plausible family of ‘macroscopic parameters’ might
be adopted. Indeed, wherever the boundary of a coarse-graining region
might be drawn, if we consider two very close points in the phase space,
one on either side of the boundary, the two would represent states that
are almost identical, and therefore macroscopically identical; yet they
have been deemed to be ‘macroscopically distinguishable’ by virtue of
their belonging to different coarse-graining regions!!"” We can resolve
this problem by asking that there be a region of ‘fuzziness’ at the bound-
aries separating one coarse-graining region from the next and, as with
the issue of subjectivity about what precisely is to qualify as a ‘macro-
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scopic parameter’, we may choose simply not to care what we do with
the phase-space points lying within this ‘fuzzy boundary’ (see Fig. 1.12).
It is reasonable to consider that such points occupy a very tiny phase-
space volume in comparison with the vast interiors of these coarse-
graining regions. For this reason, whether we consider a point close to
the boundary to belong to one region or to the other will be a matter of
little concern, as it makes effectively no difference to the value of the
entropy that would normally be assigned to a state. Again, we find that
the notion of the entropy of a system is a very robust one—despite the
lack of complete firmness in its definition—owing to the very vastness
of the coarse-graining regions, and of the enormous imbalance between
their sizes.

two very close points of P
in different coarse-graining regions

coarse-graining
boundary
-

fuzzy boundary
(ignore points in this region)

Fig.1.12 ‘Fuzziness’ at the boundaries separating one coarse-graining region from
the next.

All this having been said, it must however be pointed out that there
are various particularly subtle situations where such crude notions of
‘macroscopic indistinguishability’ would appear to be inadequate, and
even seem to give us quite wrong answers for the entropy! One such situ-
ation occurs with the phenomenon of spin echo (first noticed by Erwin
Hahn in 1950) that is made use of in connection with nuclear magnetic
resonance (NMR). According to this phenomenon, some material with
an initial specific state of magnetization, with nuclear spins!'® closely
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aligned, can lose this magnetization under the influence of a varying
external electromagnetic field, the nuclear spins then taking up a much
more higgledy-piggledy-appearing configuration owing to a complicated
collection of spin precessions occurring at different rates. But if the
external field is then carefully reversed, the nuclear spins all return to
their original states, so that, very strikingly, the specific original magne-
tization state is retrieved! As far as macroscopic measurements are
concerned, it would appear that the entropy had increased in the transi-
tion to this intermediate stage (with the higgledy-piggledy nuclear spins)—
consistently with the Second Law—but when the nuclear spins regain the
order that they had lost in the intermediate stage, as a result of the appli-
cation of the reversed external electromagnetic field, it would appear that
the Second Law has been grossly violated, owing to an entropy decrease
during this final process!!"!

The fact is that even though the spin states would appear to be very
disordered in the intermediate situation, there is actually a very precise
‘hidden order’ in the apparently higgledy-piggledy arrangement of spins,
this order being revealed only when the pattern of external magnetic
field movements is reversed. Something analogous occurs with a CD or
DVD, where any ordinary crude ‘macroscopic measurement’ would be
likely not to reveal the very considerable stored information on such a
disc, whereas an appropriate playing device specifically designed to read
the disc would have no trouble in revealing this stored information. To
detect this hidden order, one needs ‘measurements’ of a much more
sophisticated type than the ‘ordinary’ macroscopic measurements that
would be adequate in most situations.

We do not really need to consider anything so technically sophisti-
cated as the examination of tiny magnetic fields to find ‘hidden order’ of
this general kind. Something essentially similar occurs with a much
simpler-looking apparatus (see Fig. 1.13, and for further information Note
1.10). This consists of two cylindrical glass tubes, one of which fits very
snugly inside the other, there being a very narrow space between the two.
Some viscous fluid (e.g. glycerine) is inserted uniformly into this thin
space between the two cylinders, and a handle is attached appropriately
to the inner one, so that it can be rotated with respect to the outer one
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which remains fixed. Now the experiment is set up so that there is a thin
straight line of bright red dye inserted in the fluid, parallel to the axis of
the cylinder (see Fig.1.14 ). The handle is then turned around several
times, the line of dye spreading as a consequence of this, until it is
observed to be distributed uniformly around the cylinder so that no trace
of its original concentration along a line is now seen, but the fluid acquires
a very faint pinkish hue. By any reasonable-looking choice of ‘macro-
scopic parameters’ to ascertain the state of the dyed viscous fluid, the
entropy would appear to have gone up, the dye being now uniformly
spread over the fluid. (The situation might appear to be very similar to
what happened with the stirred combination of red and blue paint that
we considered in §1.2.) However, if the handle is now rotated in the
reverse direction, by just the same number of turns as had been used
before, we find, rather miraculously, that the line of red dye reappears,
and becomes almost as clearly defined as it had been in the first place!
If the entropy had indeed been raised in the initial winding, by the amount
that had appeared to be the case, and if the entropy is considered to have
returned to close to its original value after the rewinding, then we have
a severe violation of the Second Law as a result of this rewinding process!

Fig. 1.13 Two snug-fitting glass tubes and viscous fluid between, with line of red
dye.

In both these situations, it would be the common viewpoint that the
Second Law has not, in actuality, been violated, but that in such situ-
ations the entropy definition has not been refined enough. In my opinion,
there is a ‘can of worms’ here, if one demands that there should be a
precise objective definition of physical entropy, applicable in all circum-
stances, with respect to which the Second Law is to be universally valid.
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Ay N

Fig. 1.14 The handle is turned several times spreading out the line of dye. The
handle is then turned back the same number of times and the line reappears in
apparent violation of the Second Law.

I do not see why one should demand that there always be a well-defined,
physically precise notion of ‘entropy’, that is entirely objective and conse-
quently ‘out there’ in Nature, in some absolute sense,!"!"! where this
‘objective entropy’ almost never decreases as time progresses. Must there
always be an actual entropy concept that applies to the slightly tinted
viscous fluid between the cylinders, or to the configurations of nuclear
spins that had appeared to become totally disorganized, though retaining
a precise ‘memory’ of the order that they had had before? I do not see
that this need be the case. Entropy is clearly an extremely useful phys-
ical concept, but I do not see why it need be assigned a truly funda-
mental and objective role in physics. Indeed, it seems reasonable to me
that the usefulness of the physical notion of entropy has its origin largely
in the fact that, for systems that we tend to encounter in the actual
universe, it turns out that the normal measures of ‘macroscopic’ quan-
tities give rise to coarse-graining volumes that do in fact differ from one
another by stupendously large factors. There is a profound issue, however,
as to why, in the universe that we know, they should differ by such enor-
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mous factors. These enormous factors reveal a remarkable fact about our
universe that does seem to be clearly objective and ‘out there’—and we
shall be coming to this shortly—despite the admittedly confusing issues
of subjectivity that are involved in our concept of ‘entropy’, these serving
merely to cloud the central mystery that underlies the profound useful-
ness of this remarkable physical notion.
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1.5 The inexorable increase
of entropy into the future

LET us try to get some understanding of why it is to be expected that
the entropy should increase when a system evolves into the future, as
the Second Law demands. Suppose we imagine that our system starts
off in a state of reasonably low entropy—so that the point p, which is
to move through phase space P thereby describing the time-evolution
of the system, starts off at a point po in a fairly small coarse-graining
region Ry (see Fig.1.15). We must bear in mind that, as noted above,
the various coarse-graining regions tend to differ in size by absolutely
enormous factors. Also, the huge dimensionality of phase space P will
tend to imply that there are likely to be vast numbers of coarse-graining
volumes neighbouring any one particular region. (Our 2- or 3-dimen-
sional images are rather misleading in this particular respect, but we
see that the number of neighbours is going up with increasing dimen-
sion—typically six in the 2-dimension case and fourteen in 3; see
Fig.1.16.) Thus, it will be exceedingly probable that the evolution curve
described by p, as it leaves the coarse-graining region Ry of the starting
point po and enters the next coarse-graining region R, will find that R,
has a hugely greater volume than Ro—for to find, instead, an enor-
mously smaller volume would seem a grossly unlikely action for the
point p to take, as though p were to succeed, just by chance, in the
proverbial search for a needle in a haystack, but here with an enor-
mously more formidable task!
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equilibrium
Rmax

Fig. 1.15 The system starts off at a point of po in a fairly small coarse-graining
region Ro.

(a)
Fig.1.16 As the dimension n increases, the typical number of neighbouring coarse-

graining regions increases rapidly. (a) n=2 with typically 6 neighbours. (b) n=3
with typically 14 neighbours.

The logarithm of Ri’s volume will also, consequently, be somewhat
greater than the logarithm of of Ro’s volume, though only a good deal
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more modestly greater than is provided by the increase in actual volume
(see §1.2 above), so the entropy will have been increased just somewhat.
Then, as p enters the next coarse-graining region, say R», we are again
highly likely to find that the volume of R» is hugely greater than that of
Ri, so the entropy value will again grow somewhat. We next expect to
find that p subsequently enters another region, say Rs, even hugely larger
than those it had been in before, and the entropy goes up again some-
what, and so on. Moreover, because of the vast increases in the volumes
of these coarse-graining regions, once p has entered a larger region, we
may regard it as a practical impossibility—i.e. as ‘overwhelmingly
unlikely’—that it will find a smaller one again, of the kind of far tinier
sizes that provided the somewhat smaller entropy values that were encoun-
tered previously. Thus, as time marches forward, into the future, the
entropy value must be expected to increase relentlessly, though far more
modestly than do the actual volumes.

Of course, it is not strictly impossible that a smaller entropy value
may be obtained in this ways; it is merely that such occurrences of entropy
reduction must be regarded as overwhelmingly unlikely. The entropy
increase that we have obtained is simply the kind of trend that we must
take to be the normal state of affairs where the evolution proceeds in a
way that has no particular bias with regard to the coarse-graining of the
phase space, and might as well be treated as though the track of p through
phase space were essentially random, despite the fact that the evolution
is actually governed by the well-defined and completely deterministic
procedures of (say) Newtonian mechanics.

One might legitimately wonder why p does not simply directly enter
Rumax, the (vastly) greatest coarse-graining region of all, rather than
sequentially entering a succession of larger and larger coarse-graining
regions as described above. Here, Rumax refers to what is commonly called
thermal equilibrium, where the volume of Rmax would be likely to exceed
the total of all the other coarse-graining regions put together. Indeed,
it may be expected that p will eventually reach Rumax, and when it does
so it will, for the most part, remain in this region, with merely the
very occasional excursion into a smaller region (a thermal fluctuation).
But the evolution curve must be regarded as describing a continuous
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evolution, where the state at one moment is not likely to differ greatly
from the state a moment before. Accordingly, the coarse-graining
volumes would be likely not to differ from their neighbours by such an
enormous amount as would be represented by a direct leap to Rmax,
despite the vast changes in coarse-graining volumes that the evolution
curve would encounter. We would not expect that the entropy is likely
to jump that discontinuously, but merely to pass fairly gradually to larger
and larger values of the entropy.

This appears to be all pretty satisfactory, and might well lead us to
believe that a gradual entropy increase into the future is a completely
natural expectation which seems to be hardly in need of further deep
deliberation—except perhaps for details of rigour that might be needed
to satisfy the mathematical purist. The egg, referred to in the previous
section, which starts, at the moment NOW, by being perched on the edge
of the table, indeed has a likely entropy-increasing future evolution that
would be consistent with its falling off the table and smashing on the
ground. This is completely in accordance with the simple considerations
of greatly increasing phase-space volumes, as indicated above.

However, let us pose another question, somewhat different from that
of the expected future behaviour of the egg. Let us ask for the likely
past behaviour of the egg. We want to know, instead: ‘what is the most
likely way for the egg to have found itself to be perched on the edge of
the table in the first place?’

We can attempt to address this issue in just the same way as before,
where we asked for the most likely future evolution of our system starting
from NOW, but this time we are asking for the most probable past evolu-
tion of our system leading up to NOW. Our Newtonian laws work just
as well in the past time-direction, and again give us a deterministic past-
evolution. Thus, there is some evolution curve leading up to the point
Po, in the phase space P, which describes this past-evolution, and repre-
sents the way that the egg happened to become poised at the edge of
the table. To find this ‘most probable’ past history of our egg, we again
examine the coarse-graining regions adjoining Ro, and we again observe
that there are vast differences in their sizes. Accordingly, there will be
enormously more evolution curves ending at po which enter Ro from a
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huge region like R1, whose volume greatly exceeds that of Ry, than there
will be that enter Ro from much smaller regions. Let us say that the
evolution curve enters Ro from the region R:’, very much larger than
Ro. Prior to this, there would again be neighbouring regions of vastly
differing sizes, and we again note that the enormous majority of evolu-
tions entering R:" would come from coarse-graining regions far larger
than R,’. Accordingly, it appears that we may again suppose that our
past-evolution curve entering R;" comes from some region R»’, of vastly
greater volume than R,’, and that likewise it entered R>’, from a region
Rs', of even larger volume than R>’, and so on. See Fig. 1.15.

This is the conclusion that our reasoning seems to have led us to, but
does it make sense? Such evolution curves would be hugely more
numerous than the evolution curves leading up to po from the succes-
sion of much smaller volumes, say . .., R3, R, R-1, Ro, which would
be likely to have actually occurred, whose volumes would be greatly
increasing from smaller volumes, in the direction of increasing time, as
would be consistent with the Second Law. Rather than providing us with
support for the Second Law, our line of reasoning now seems to have
led us to a completely wrong answer, namely to expect continual gross
violations of the Second Law in the past!

Our reasoning seems to have led us to expect, for example, that an
exceedingly probable way that our egg originally found itself to be
perched at the edge of the table was that it started as a mess of broken
eggshell at the bottom of the table, mixed with yolk and albumen all
churned up together and partly absorbed between the floorboards. This
mess then spontaneously collected itself together, removing itself cleanly
from the floor, with yolk and albumen thoroughly separating out and
becoming completely enclosed by the miraculously self-assembling
eggshell to provide a perfectly constructed egg, which propels itself from
the ground at exactly the right speed so that it can become delicately
perched on the edge of the table. Such behaviour would be of the kind
that our above reasoning led to, with a ‘probable’ evolution curve succes-
sively passing through regions with volumes of greatly reducing size,
like . .., R, R, Ri’, Ro. But this would be grossly in conflict with
what presumably actually happened, namely that some careless person
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placed the egg on the table, not realizing that it was in danger of rolling
too close to the edge. That evolution would have been consistent
with the Second Law, being represented in the phase space P, by an
evolution curve passing through the succession of greatly increasing
volumes . . ., R3, R, R1, Ro. When applied in the past time-direc-
tion, our argument has indeed given us an answer that is about as
completely wrong as one could imagine.

49



1.6 Why is the past different?

Why has our reasoning gone so sadly astray—this being apparently just
the same reasoning that seemed convincingly to lead us to expect that
the Second Law, with overwhelming probability, must hold for the future
evolution of an ordinary physical system? The trouble with the reasoning,
as I have provided it, lies in the assumption that the evolution can be
regarded as effectively ‘random’ in relation to the coarse-graining regions.
Of course it is not really random, as noted above, since it is precisely
determined by the dynamical (e.g. Newton’s) laws. But we have taken
it that there is no particular bias in this dynamical behaviour, in relation
to these coarse-graining regions, and this supposition seemed to be fine
for the future evolution. When we consider the past evolution, however,
we find that this is manifestly not the case. There is a great deal of bias,
for example, in the past-evolved behaviour of the egg, where it would
appear to be guided inexorably—if viewed from a time-reversed perspec-
tive—from an original messy broken state, through exceptionally improb-
able actions albeit all in accordance with the dynamical laws, to the
exceedingly improbable state of being balanced, complete and unbroken,
at the edge of the table. If such behaviour were to be observed in future-
directed behaviour it would be regarded as an impossible form of tele-
ology or magic. Why do we regard such clearly focused behaviour as
being perfectly acceptable if it is directed towards the past, whereas it
would be rejected as scientifically unacceptable if directed into the future?
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The answer—though hardly a ‘physical explanation’—is simply that
such ‘past-teleology’ is common experience, whereas ‘future-teleology’ is
just something that we never seem to encounter. For it is just a fact of the
observed universe that we do not encounter such ‘future-teleology’; it is
just observational fact that the Second Law holds good. In the universe
we know, the dynamical laws appear not to be guided in any way to a
future goal and can be regarded as being completely unconcerned with
coarse-graining regions; whereas such ‘guidance’ of the evolution curve
in past directions is utterly commonplace. If we examine the evolution
curve in its past behaviour, it seems to be ‘deliberately’ seeking ever smaller
and smaller coarse-graining regions. That we do not regard this as strange
is simply a matter of it being such a familiar part of our everyday ex-
perience. The experience of an egg rolling off the edge of a table and
smashing on the floor below is not regarded as strange, whereas a movie
film of such an occurrence which is run in the reverse time-direction does
indeed look extremely odd, and it represents something that in the ordi-
nary time-direction is simply not part of our experience of the physical
world. Such ‘teleology’ is perfectly acceptable if we are looking towards
the past, but it is not a feature of our experience that it apply towards the
future.

In fact we can understand this seeming past-teleology of behaviour if we
simply suppose that the very origin of our universe was represented in phase
space by a coarse-graining region of quite exceptional tininess, so that the
initial state of the universe was one of particularly small entropy. So long
as we may take it that the dynamical laws are such that there is an appro-
priate degree of continuity in the way that the entropy of the universe behaves,
as noted above, then we need merely suppose that the universe’s initial
state—what we call the Big Bang—had, for some reason, an extraordinarily
tiny entropy (a tininess which, as we shall be seeing in the next part, has a
rather subtle character). The appropriate continuity of entropy would then
imply a relatively gradual increase of the universe’s entropy from then on
(in the normal time-direction), giving us some kind of theoretical justifica-
tion of the Second Law. So the key issue is indeed the specialness of the
Big Bang, and the extraordinary minuteness of the initial coarse-graining
region B that represents the nature of this special initial state.
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The issue of the Big-Bang specialness is central to the arguments of
this book. In §2.6 we shall be seeing how extraordinarily special the
Big Bang must actually have been and we shall have to confront the
very particular nature of this initial state. The underlying deep puzzles
that this raises will later lead us into the strange line of thought that
provides the distinctive underlying theme of this book. But just for the
moment, we may simply take note of the fact that once we accept that
such an extraordinarily special state did indeed originate the universe
that we know, then the Second Law, in the form that we observe it, is
a natural consequence. Provided that there is no corresponding low-
entropy ultimate state of the universe, or some such, providing us with
a teleological demand that the universe’s evolution curve has to termi-
nate in some other extraordinarily tiny ‘future’ region F in P, then our
reasoning for the increase of entropy in the future time-direction seems
to be perfectly acceptable. It is the initial low-entropy constraint,
demanding that the evolution curve originate within the extraordinarily
tiny region B that gives us a theoretical basis for the Second Law that
we actually experience in our universe.

A few points of clarification should however be addressed before we
venture (in Part 2) into a more detailed examination of the Big-Bang state.
In the first place, it has occasionally been argued that the existence of a
Second Law holds no mystery, for our experience of the
passage of time is dependent upon an increasing entropy as part of what
constitutes our conscious feeling of the passage of time; so whatever time-
direction we believe to be the ‘future’ must be that in which entropy
increases. According to this argument, had the entropy been decreasing
with respect to some time-parameter #, then our conscious feelings of
temporal flow would project in the reverse direction, so that we would
regard the small values of entropy to lie in what we think of as our ‘future’
and the large values in our ‘past’. We would therefore take the parameter
t to be the reverse of a normal time parameter, so that the entropy would
still be increasing into what we experience as being the future. Thus, so
the argument goes, our psychological experiences of the passage of time
would always be such that the Second Law holds true, irrespective of the
physical direction of the progression of entropy.
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However, even leaving aside the very dubious nature of any such argu-
ment from our ‘experience of time progression’—when we know almost
nothing about what physical prerequisites might be required for ‘conscious
experience’—this argument misses the crucial point that the very useful-
ness of the notion of entropy depends upon our universe being enor-
mously far from thermal equilibrium, so that coarse-graining regions that
are far smaller than Run.x are involved in our common experience. In
addition to this, the very fact that entropy is either uniformly increasing
or uniformly decreasing depends upon the actuality of one or the other
end (but not both ends) of the evolution curve in phase space being
constrained to a very tiny coarse-graining region, and this is the case for
only a very minute fraction of possible universe histories. It is the very
tininess of the coarse-graining region B that our evolution curve appears
to have encountered that needs explaining, and this issue is completely
untouched by the aforementioned argument.

Sometimes the argument is made (perhaps in conjunction with the
above) that the presence of a Second Law is an essential prerequisite for
life, so that living beings like ourselves could only exist in a universe
(or a universe epoch) in which the Second Law holds true, this law being
a necessary ingredient of natural selection, etc. This is an example of
‘anthropic reasoning’ and I shall be returning briefly to this general issue
in §3.2 (end) and §3.3. Whatever value this type of argument may have
in other contexts, it is next to useless here. Again there is the very dubious
aspect of such reasoning that we do not have a great deal more under-
standing of the physical requirements for life than we do for conscious-
ness. But even apart from this, and even assuming that natural selection
is indeed an essential prerequisite for life, and that it does require the
Second Law, this still provides no explanation for the fact that the same
Second Law operative here on Earth appears to hold everywhere in the
observable universe to distances far beyond those of any relevance to
local conditions, such as in galaxies thousands of millions of light years
distant, and to times far earlier than the beginnings of life on Earth.

One further point to bear in mind is the following. If we do not assume
the Second Law, or that the universe originated in some extraordinarily
special initial state, or something else of this general nature, then we
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cannot use the ‘improbability’ of the existence of life as a premise for
a derivation of a Second Law that is operative at times earlier than the
present. No matter how curious and non-intuitive it may seem, the produc-
tion of life would (if we do not make a prior assumption of the Second
Law) be far less probable to come about by natural means—be it by
natural selection or any by other seemingly ‘natural’ process—than by
a ‘miraculous’ creation simply out of random collisions of the constituent
particles! To see why this must be, we again examine our evolution curve
in the phase space P. If we consider the coarse-graining region £ which
represents our present-day Earth, teeming with life as it is, and we ask
for the most probable way that this situation can have come about, then
we again find that—as with our sequence of greatly decreasing coarse-
graining regions . . . , Rs', R2', Ri’, Ro considered in §1.5 above—the
‘most probable’ way in which £ would have been reached would have
been via some corresponding sequence of coarse-graining regions . . .,
L', L), L', L of greatly decreasing volume, representing some
completely random-looking teleological assembly of life, completely at
odds with what actually happened, this being violently in disagreement
with the Second Law, rather than providing a demonstration of it.
Accordingly, the mere existence of life provides, in itself, no argument
whatever for the full validity of the Second Law.

There is a final point that should be addressed here, having to do with
the future. I have argued that it is just a matter of observational fact that
the Second Law, with its consequence of an enormous constraint on the
initial state, actually holds true in our universe. It is again just a matter
of observation that there appears not to be a corresponding constraint in
the very remote future. But do we really know that the latter is actually
the case? We do not really have much direct evidence of what, in detail,
the very remote future will be like. (The evidence that we do have will
be discussed in §3.1, §3.2, and §3.4.) We can certainly say that there is
no indication available to us now, that hints that the entropy might even-
tually start to come down again, so that ultimately the very reverse of
the Second Law might hold in the remote future. Yet, I do not see that
we can absolutely rule out such a thing for the actual universe that we
inhabit. Although the ~1.4x10'° years that have elapsed since the Big
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Bang may seem to be a very long time (see §2.1), and no such reversed
Second-Law effects have been observed, this time-span is as nothing
when compared with what seems to be projected for the complete future
time-span of the universe (as we shall be coming to address in §3.1)! In
a universe constrained to have an evolution curve that terminates within
some tiny region F, its very late evolution must ultimately begin to expe-
rience curious correlations between particles that would eventually lead
to the kind of teleological behaviour that would seem to us now to be
as strange as the self-assembling egg described in §1.5 above.

There is no inconsistency with (say Newtonian) dynamics for the evolu-
tion curve of the universe, in its phase space P, to be constrained so that
it originates in one very tiny coarse-graining region B and also terminates
in another one F. There would be far fewer such curves than there would
be those which merely originate in B, but we must already be accustomed
to the fact that those which merely originate in B, as appears to be the
case with the actual universe we inhabit, represent but an extremely minute
proportion of the totality of possibilities. The situations in which the evolu-
tion curve is indeed constrained to have both end-points in very tiny regions
would represent an even far tinier fraction of all the possibilities, but their
logical status is not very different, and we cannot just rule them out. For
such evolutions there would be a Second Law operating in the early stages
of the universe, just as seems to be the case for the universe we know, but
in the very late stages we should find that a reverse Second Law holds
true, with entropy ultimately decreasing with time.

I do not myself regard as at all plausible this possibility that the Second
Law might eventually reverse—and it will play no significant role in the
main proposal that I shall be making in this book. Yet it should be made
clear that while our experience provides no hint of such an ultimate
reversal of the Second Law, such an eventuality is not intrinsically absurd.
We must keep an open mind that exotic possibilities of this kind cannot
necessarily be ruled out. In Part 3 of this book, I shall be making a
different proposal, and an open mind will be helpful, also, for appreci-
ating what I have to say. Yet the ideas are based on some remarkable
facts about the universe, about which we can be reasonably certain. So
let us start, in Part 2, with what we actually know about the Big Bang.
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2.1 Our expanding universe

THE Big Bang: what do we believe actually happened? Is there clear
observational evidence that a primordial explosion actually took place—
from which the entire universe that we know appears to have origin-
ated? And, central to the issues raised in Part 1 is the question: how
can such a wildly hot violent event represent a state of extraordinarily
tiny entropy?

Initially, the main reason for believing in an explosive origin for
the universe came from persuasive observations by the American
astronomer Edwin Hubble that the universe is expanding. This was in
1929, although indications of this expansion had been previously
noticed by Vesto Slipher in 1917. Hubble’s observations demonstrated
rather convincingly that distant galaxies are moving away from us
with speeds that are basically proportional to their distances from
us, so that if we extrapolate backwards, we come to the conclusion
that everything would have come together at more or less the same
time. That event would have constituted one stupendous explosion—
what we now refer to as the ‘Big Bang’—at which all matter appears
to have had its ultimate origin. Subsequent observations, of which
there are many, and detailed specific experiments (some of which I
shall come to shortly), have confirmed and greatly strengthened
Hubble’s initial conclusions.

Hubble’s considerations were based on the observations of a red shift
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2.1 Cycles of Time

in the spectral lines in the light emitted by distant galaxies. The term
‘red shift’ refers to the fact that the spectrum of frequencies emitted by
different kinds of atoms in a distant galaxy is seen, on Earth, as being
slightly shifted in the direction of red (Fig. 2.1), which is a uniform
reduction in frequency consistent with an interpretation as the Doppler
shift,>!1 i.e. a reddening due to the observed object receding from us at
considerable speed. The red shift is greater for galaxies that appear to
be more distant, and the correlation with apparent distance turns out to
be consistent with Hubble’s picture of a spatially uniform expansion of
the universe.

Distant Galaxy

WWWW%AWNemSW

1 ]
4000 5000 6000 7000 8000
Blue Red

Fig. 2.1 The ‘red shift’ of the spectrum emitted by atoms in a distant galaxy is
consistent with an interpretation as a Doppler shift.

Many refinements in the observations and their interpretation have
occurred in the succeeding years, and it is fair to say that not only has
Hubble’s original contention been confirmed, in general terms, but recent
work has given a fairly detailed view of how the expansion rate of the
universe has evolved with time, providing us with a picture which is
now pretty well generally accepted (although there are still some note-
worthy dissenting voices,>?! when it comes to some of the detailed issues).
In particular, a rather firm, generally agreed date of close to 1.37x 10"
years ago, has been established for the moment when the matter of the
universe would have to have been all together at its starting point—at
what we indeed refer to as the ‘Big Bang’.*

One should not think of the Big Bang as being localized at some
particular region of space. The view that cosmologists take, in accord-
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ance with Einstein’s perspective of general relativity, is that at the time
that it occurred, the Big Bang encompassed the entire spatial spread of
the universe, so it included the totality of all of physical space, not
merely the material content of the universe. Accordingly space itself is
taken to have been, in an appropriate sense, very tiny at the time. To
understand such confusing matters, it is necessary to have some idea
of how Einstein’s curved-space-time general theory of relativity works.
In §2.2, I shall have to address Einstein’s theory in a fairly serious way,
but for the moment, let us content ourselves with an analogy that is
frequently used, namely that of a balloon which is being blown up. The
universe, like the surface of the balloon, expands with time, but the whole
of space expands with it, there being no central point in the universe
from which it all expands. Of course the 3-dimensional space within
which the balloon is depicted as expanding, does contain a point in its
interior, which is central to the balloon’s surface, but this point is not
itself part of the balloon’s surface, where that surface is taken to repre-
sent the entirety of the universe’s spatial geometry.

The time-dependence of the actual universe’s expansion, that obser-
vations reveal, is indeed in striking accordance with the equations of
Einstein’s general theory of relativity, but apparently only if two some-
what unexpected ingredients are incorporated into the theory, now
commonly referred to under the (somewhat unfortunate'>#!) names of
‘dark matter’ and ‘dark energy’. Both of these ingredients will have
considerable importance for the proposed scheme of things that I shall
be introducing the reader to in due course (see §3.1, §3.2). They are now
part of the standard picture of modern cosmology, though it must be said
that neither is completely accepted by all experts in the field.!>>! For my
own part, I am happy to accept both the presence of some invisible mate-
rial—the ‘dark matter’—of a nature that is essentially unknown to us,
yet constituting some 70% of the material substance of our universe, and
also that Einstein’s equations of general relativity must be taken in the
modified form that he himself put forward in 1917 (though he later
retracted it), in which a tiny positive cosmological constant A (the most
plausible form of ‘dark energy’) must be incorporated.

It should be pointed out that Einstein’s general theory of relativity
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(with or without the tiny A) is now extremely well tested at the scale
of the solar system. Even the very practical global positioning devices,
that are now in common use, depend upon general relativity for their
remarkable accuracy of operation. Considerably more impressive is the
extraordinary precision of Einstein’s theory in its modelling of the behav-
iour of binary pulsar®® systems—up to an overall precision of some-
thing like one part in 10 (in the sense that the timing of the pulsar
signals from the binary system PSR-1913+ 16, over a period of some
40 years, is accurately modelled with a precision of around 107 of a
second per year).

The original cosmological models, based on Einstein’s theory, were
those put forward by the Russian mathematician Alexander Friedmann
in 1922 and 1924. In Fig. 2.2, I have sketched the space-time histories
of these models, depicting the time evolutions of the three cases (taking
A=0), in which the spatial curvature of the universe is, respectively,
positive, zero, and negative.>” As will be my convention, in virtually
all my space-time diagrams, the vertical direction represents time evolu-
tion and the horizontal directions, space. In all three cases, it is assumed
that the spatial part of the geometry is completely uniform (what is
called homogeneous and isotropic). Cosmological models with this kind
of symmetry are called Friedmann—Lemaitre—Robertson—Walker
(FLRW) models. The original Friedmann models are a particular case,
where the type of matter being described is a pressureless fluid, or ‘dust’
(see also §2.4).

K>0

K<0

time

Fig. 2.2 Space-time histories for Friedmann’s cosmological models in which the
spatial curvature of the universe is positive, zero, and negative (left to right).
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Fig.2.3 The three basic kinds of uniform plane geometry as illustrated by Maurits
C. Escher: (a) elliptic (positive, K>0); (b) Euclidean (flat, K=0); (c) hyperbolic
(negative, K<0). Copyright M. C. Escher Company (2004).

Essentially,>® there are just these three cases to consider for the spatial
geometry, namely the case K>0 of positive spatial curvature, where the
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spatial geometry is the 3-dimensional analogue of a spherical surface
(like our balloon, referred to above), the flat case K=0, where the spatial
geometry is the familiar 3-dimensional geometry of Euclid, and the nega-
tively curved case K<O of hyperbolic spatial 3-geometry. It is fortunate
for us that the Dutch artist Maurits C. Escher has illustrated all three of
these different kinds of geometry beautifully in terms of tessellations of
angels and devils, see Fig. 2.3. We must bear in mind that these simply
depict 2-dimensional spatial geometry, but analogues of all three kinds
of geometry exist also in the full 3 spatial dimensions.

All these models originate with a ‘Big-Bang’ singular state—where
‘singular’ refers to the fact that the density of material and the curva-
ture of the space-time geometry become infinite at this initial state—so
that Einstein’s equations (and physics, as a whole, as we know it) simply
‘give up’ at the singularity (although see §3.2 and Appendix B10). It
will be noted that the temporal behaviour of these models rather mirrors
their spatial behaviour. The spatially finite case (K>0; Fig. 2.3(a)) is
also the temporally finite case, where not only is there an initial Big-
Bang singularity but there is also a final one, commonly referred to as
a ‘Big Crunch’. The other two cases (K<0; Fig.2.3(b),(c)) are not only
spatially infinite>?! but temporally infinite also, their expansion contin-
uing indefinitely.

Since around 1998, however, when two observational groups, one
headed by Saul Perlmutter and the other by Brian P. Schmidt, had been
analysing their data concerning very distant supernova explosions,>1%
evidence has mounted which strongly indicates that the expansion of the
universe in its later stages does not actually match the evolution rates
predicted from the standard Friedman cosmologies that are illustrated in
Fig.2.2. Instead, it appears that our universe has begun to accelerate in
its expansion, at a rate that would be explained if we are to include into
Einstein’s equations a cosmological constant A, with a small positive
value. These, and later observations of various kinds,'>!!! have provided
fairly convincing evidence of the beginnings of the exponential expan-
sion characteristic of a Friedmann model with A>0. This exponential
expansion occurs not only with the cases K<0 which in any case expand
indefinitely in their remote futures even when A=0, but also in the
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spatially closed case K>0, provided that A is large enough to overcome
the tendency for recollapse that the closed Friedmann model possesses.
Indeed, the evidence does indicate the presence of a large-enough A, so
that the value (sign) of K has become more-or-less irrelevant to the expan-
sion rate, where the (positive) value of A that appears actually to be
present in Einstein’s equations would then dominate the late-time behav-
iour, providing an exponential expansion independently of the value of
K within the observationally acceptable range. Accordingly, we appear
to have a universe with an expansion rate that is basically in accordance
with the curve shown in Fig. 2.4, the space-time picture appearing to be
in accordance with Fig. 2.5.

A

R

A>0

Fig. 2.4 Expansion rate of the universe for positive A, with eventual exponential
growth.

space sections _
may be finite
/7% WE are

or infinite
\,> somewhere
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scale

Fig. 2.5 Space-time expansion of the universe. Picture with positive A (suggest-
ively drawn so as not be be biased as to the value of K).
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In view of this, I shall not be particularly concerned here with the
difference between these three possibilities for the universe’s spatial geom-
etry. In fact the present observations indicate an overall spatial geometry
for the universe that is rather close to the flat case K=0. In one sense this
is somewhat unfortunate, because it tells us that we really do not know the
answer to the question of what the overall spatial geometry of the universe
actually is likely to be—whether the universe is necessarily spatially closed,
or might be spatially infinite, for example—because in the absence of
powerful theoretical reasons for believing the contrary, there will always
remain some possibility of a small positive or negative overall curvature.

On the other hand, many cosmologists are of the opinion that the
viewpoint provided by cosmic inflation does provide a powerful reason
for believing that the spatial geometry of the spatial universe must be
(apart from relatively small local deviations) actually flat (K=0), so
they are pleased by this observational closeness to flatness. Cosmic
inflation is a proposal that, within a very tiny time-period somewhere
between around 107¢and 107 seconds after the Big Bang, the universe
underwent an exponential expansion, increasing its linear dimension by
an enormous factor of around 10* or 10% (or even 10'%) or so. I shall
have more to say about cosmic inflation later (see §2.6), but for the
moment, I should just warn the reader that I am not enthusiastic about
this particular proposal, despite its largely universal acceptance among
present-day cosmologists. In any case, the presence of an early infla-
tionary stage in the history of the universe would not affect the appear-
ance of Figs. 2.2 and 2.5, since the effects of inflation would show up
only at the very early stages, just following the Big Bang, and would
not be visible on the scale at which Figs.2.2 and 2.5 are drawn. On the
other hand, the ideas that I shall be putting forward later in this book
appear to provide credible alternatives to inflation for explaining those
observed phenomena that seem to depend upon it in the currently popular
cosmological schemes (see §3.5).

Apart from such considerations, I have a quite different motivation
for presenting the picture of Fig. 2.3(c) here, since it illustrates a point
which will have fundamental significance for us later on. This beautiful
Escher print is based on a particular representation of the hyperbolic
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plane which is one of several put forward by the highly ingenious Italian
geometer Eugenio Beltrami®!'? in 1868. The same representation was
rediscovered, about 14 years later, by the leading French mathematician
Henri Poincaré, whose name is more commonly attached to it. To avoid
adding to this confusion about terminology, I shall usually refer to it
here simply as the conformal representation of the hyperbolic plane, the
term ‘conformal’ referring to the fact that angles in this geometry are
correctly represented in the Euclidean plane in which it has been depicted.
The ideas of conformal geometry will be addressed in a little more detail
in §2.3.

We are to think of all the devils in the geometry as being congruent
with each other according to the hyperbolic geometry being represented,
and likewise all the angels to be regarded as congruent. Clearly their
sizes, according to the background Euclidean measure, are represented
as tinier the closer to the circular boundary we examine them, but the
representation of angles or infinitesimal shapes remain true, as close to
the boundary as we care to examine them. The circular boundary itself
represents infinity for this geometry, and it is this conformal represen-
tation of infinity as a smooth finite boundary that I am pointing out here
to the reader, as it will be playing a central role in the ideas that we
shall be coming to later (particularly in §2.5 and §3.2).
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2.2 The ubiquitous microwave background

In the 1950s, a popular theory of the universe was one referred to as the
steady state model, a proposal first put forward by Thomas Gold and
Hermann Bondi in 1948, and soon taken up in more detail by Fred
Hoyle,">3) who were all at Cambridge University at the time. The theory
required there to be a continual creation of material throughout space,
at an extremely low rate. This material would have to be in the form of
hydrogen molecules—each being a pair consisting of one proton and
one electron, created out of the vacuum—at the extremely tiny rate of
about one such atom per cubic metre per thousand million years. This
would have to be at just the right rate to replenish the reduction of the
density of material due to the expansion of the universe.

In many respects, this is a philosophically attractive and aesthetically
pleasing model, as the universe requires no origin in time or space, and
many of its properties can be deduced from the requirement that it should
be self-propagating. It was fairly soon after this theory was being proposed
that I entered Cambridge University, in 1952, as a young graduate student
(researching in pure mathematics, but with a keen interest in physics and
cosmology>!¥), and I returned later, in 1956, as a research fellow. While
at Cambridge, I got to know all three of the steady-state theory’s origin-
ators, and I had certainly found this model to be appealing and the argu-
ments fairly persuasive. However, towards the end of my time at Cambridge,
detailed counts of distant galaxies carried out at the Mullard Radio
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Observatory by (Sir) Martin Ryle (also in Cambridge) were beginning to
provide clear observational evidence against the steady-state model.*!!

But the real death-blow was the accidental observation by the Americans
Arno Penzias and Robert W. Wilson, in 1964, of microwave electromag-
netic radiation, coming from all directions in space. Such radiation had in
fact been predicted, in the later 1940s by George Gamow, and by Robert
Dicke on the basis of what was then the more conventional ‘Big-Bang
theory’, such presently observable radiation being sometimes described as
‘the flash of the Big Bang’, the radiation having been cooled from some
4000K to a few degrees above absolute zero'>!¢! by an enormous red-shift
effect due to the vast expansion of the universe since the emission of the
radiation. After Penzias and Wilson had convinced themselves that the
radiation they were observing (of around 2.725K) was genuine, and must
actually be coming from deep space, they consulted Dicke, who was quick
to point out that their puzzling observations could be explained as what
he and Gamow had previously predicted. This radiation has gone under
various different names (‘relic radiation’, 3-degree background, etc.); nowa-
days it is commonly referred to simply as the ‘CMB’, which stands for
‘cosmic microwave background’.*!” In 1978, Penzias and Wilson were
awarded the Nobel Prize in Physics for its discovery.

The source of the photons which actually constitute the CMB that we
now ‘see’ is not really the ‘actual Big Bang’, however, as these photons
come to us directly from what is called the ‘surface of last scattering’
which occurred some 379000 years following the moment of the Big
Bang (i.e. when the universe was about 1/36 000 of its present age). Earlier
than this, the universe was opaque to electromagnetic radiation because
it would have been inhabited by large numbers of separate charged parti-
cles—mainly protons and electrons—milling around separately from each
other, constituting what is referred to as a ‘plasma’. Photons would have
scattered many times in this material, being absorbed and created copi-
ously, and the universe would have been very far from transparent. This
‘foggy’ situation would have continued until the time referred to as ‘decoup-
ling” (where ‘last scattering” occurs) at which the universe became trans-
parent because it had cooled down sufficiently for the separate electrons
and protons to be able to pair up, largely in the form of hydrogen (with
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a few other atoms produced, mainly about 23% helium, whose nuclei—
called ‘o-particles’—would have been among the products of the first
few minutes of the universe’s existence). The photons were then able to
decouple from these neutral atoms, to travel essentially undisturbed from
then on, to become the radiation which is now perceived as the CMB.

Since its initial observation in the 1960s, many experiments have been
performed to get better and better data concerning the nature and distri-
bution of the CMB, there being so much detailed information now, that
the subject of cosmology has been completely transformed—from one
in which there was much speculation and very little data to bear on this
speculation—to a precision science, in which, although there is still much
speculation, there is now a very great deal of detailed data to modulate
this speculation! One particularly noteworthy experiment was the COBE
satellite (Cosmic Background Explorer), launched by NASA in November
1989. Its remarkable observations earned George Smoot and John Mather
the 2006 Nobel Prize in Physics.

There are two very striking and important features of the CMB which
were made particularly evident by COBE, and I want to concentrate on
both of these. The first is the extraordinary closeness by which the observed
frequency spectrum matches that explained by Max Planck in 1900 to
account for the nature of what is called ‘black-body radiation’ (and which
marked the starting point of quantum mechanics). The second is the
extremely uniform nature of the CMB over the whole sky. Each of these
two facts will be telling us something very fundamental about the nature
of the Big Bang, and its curious relation to the Second Law. Much of
modern cosmology has moved on from this now, and is concerned more
with the slight and subtle deviations from uniformity in the CMB that
are also seen. I shall be coming to some of these later (see §3.6), but for
the moment I shall need to address these two more blatant facts in turn,
as we shall find that they both have a very great significance for us.

Figure 2.6 depicts the frequency spectrum of the CMB, essentially as
initially measured by COBE, but where now greater precision is obtained
from later observations. The vertical axis measures the intensity of the
radiation, as a function of the different frequencies, these being marked
off along the horizontal axis with increasing frequency off to the right.
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The continuous line is Planck’s ‘black-body curve’, which is given by a
specific formula,!® and it is what quantum mechanics tells us is the radi-
ation spectrum of thermal equilibrium, for any particular temperature 7.
The little vertical bars are error bars, telling us roughly the range within
which the observed intensities lie. It should be noted, however, that these
error bars are exaggerated by a factor of 500, so the actual observation
points lie much more closely on the Planck curve than would appear—in
fact, so closely that, to the eye, even the observations on the very far right,
where the error is greatest, concur with the Planck curve to within the
thickness of the ink line! Indeed, the CMB provides us with the most
precise agreement between an observed intensity spectrum and the calcu-
lated Planck black-body curve that is known in observational science.
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Fig. 2.6 Frequency spectrum of the CMB, as initially observed by COBE, but
supplemented by later more precise observations. Note that the ‘error bars’ are exag-
gerated by a factor of 500. This shows precise agreement with the Planck spectrum.

What does this tell us? It appears to tell us that what we are looking
at comes from a state that must effectively be thermal equilibrium. But
what does ‘thermal equilibrium’ actually mean? I refer the reader back
to Fig. 1.15, where we find the words ‘thermal equilibrium’ labelling the
coarse-graining region of phase space which is (by far) the largest of all.
In other words, this is the region representing maximum entropy. But we
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must recall the thrust of the arguments given in §1.6. These arguments
told us that the whole basis of the Second Law must be explained by the
fact that the initial state of the universe—which we evidently must take
as being the Big Bang—must be a (macroscopic) state of extraordinarily
tiny entropy. What we appear to have found is essentially the complete
opposite, namely a (macroscopic) state of maximum entropy!

One point must be addressed here, namely the fact that the universe
is expanding, so what we are looking at can hardly be an actual ‘equi-
librium’ state. However, what is evidently happening here is an adia-
batic expansion, where ‘adiabatic’ here refers, effectively, to a ‘reversible’
change in which the entropy remains constant. The fact that this kind of
‘thermal state’ is actually preserved in the early universe’s expansion
was pointed out by R.C. Tolman in 1934.12") We shall be seeing some
more of Tolman’s contributions to cosmology in §3.3. In terms of phase
space, the picture is more like Fig. 2.7 than Fig. 1.15, where the expan-
sion is described as a succession of maximal coarse-graining regions of
essentially equal volume. In this sense, the expansion can still be viewed
as a kind of thermal equilibrium.

phase space

Fig. 2.7 Adiabatic expansion of the universe depicted as a succession of maximal
coarse-graining regions of equal volume.
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So we still seem to be seeing maximum entropy. Something appears
to have gone seriously wrong with the arguments. It is not even just that
the observations of the universe have come up with a surprise. Not at
all: in a certain sense, the observations are closely in accord with what
was expected. Given that there was actually a Big Bang, and that this
initial state is to be described as being in accord with the standard picture
presented by general-relativistic cosmology, then a very hot and uniform
initial thermal state is what would be expected. So where does the reso-
lution of this conundrum lie? Perhaps rather surprisingly, the issue has
to do with the assumption that the universe is indeed in accordance with
the standard picture of relativistic cosmology! We shall need to examine
this assumption very carefully indeed, to see what has eluded us.

First, we must remind ourselves what Einstein’s general theory of
relativity is all about. It is, after all, an extraordinarily accurate theory
of gravity, where the gravitational field is described in terms of a curva-
ture of space-time. I shall have a lot to say about this theory in due
course, but for the moment let us think in terms of the older—and still
extraordinarily accurate—~Newtonian gravitational theory, and try to
understand, in rough general terms, how it fits in with the Second Law—
of thermodynamics, that is; I do not mean Newton’s second law!

Often, considerations of the Second Law might be discussed in terms
of a gas constrained to lie within a sealed box. In accordance with such
discussions, let us imagine that there is a small compartment in one
corner of the box, and the gas is initially constrained to be within that
compartment. When the door to the compartment is opened and the gas
is allowed to move freely within the box, we expect that it will rapidly
spread itself out evenly within the box, and the entropy would indeed
be increasing throughout this process, in accordance with the Second
Law. The entropy is thus much higher for the macroscopic state in which
the gas is distributed uniformly than it was when the gas was all together
in the compartment. See Fig. 2.8(a). But let us now consider a similar-
looking situation, but with an imaginary box of galactic size, and where
the individual molecules of gas are replaced by individual stars moving
within this box. The difference between this situation and that of the gas
is not just a matter of scale, and I shall take size to be irrelevant for the
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present purposes. What is relevant is the fact that the stars attract each
other, through the relentless force of gravity. We might imagine that the
distribution of stars is initially spread fairly uniformly throughout our
galactic-sized box. But, now, as time progresses, we find a tendency for
the stars to collect together in clumps (and generally to move more
rapidly as they do so). Now the uniform distribution is not the one of
highest entropy, increasing entropy being accompanied by an increase
in the clumpiness of the distribution. See Fig. 2.8(b).

Gas in a box

(a) time S
———entropy Y

Gravitating bodies

. .'r‘h

(b) “black hole
Fig. 2.8 (a) Gas is initially constrained within a small compartment in the corner
of a box before being released and distributing itself uniformly throughout the box.
(b) In a galactic-sized box, stars are initially uniformly distributed but collect together
in clumps over time: a uniform distribution in this case is not the one with highest
entropy.

We may ask what now is the analogue of thermal equilibrium, where
the entropy has increased to its maximum? It turns out that this ques-
tion cannot be properly addressed within the confines of Newtonian
theory. If we consider a system that consists of massive point particles
attracting each other according to Newton’s inverse square law, then we
can envisage states in which some of the particles get progressively closer
and closer to each other, moving more and more rapidly, so that there
is no limit to the degree of clumpiness and rapidity of motion, and the
proposed state of ‘thermal equilibrium’ simply does not exist. The situ-
ation turns out to be much more satisfactory in Einstein’s theory, because
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the ‘clumpiness’ can saturate, when the matter conglomerates into a
black hole.

We shall come to black holes in more detail in §2.4, where we learn
that the formation of a black hole represents an enormous increase in
the entropy. Indeed, at the present epoch of the universe’s evolution, the
greatest entropy contribution, by far, lies in large black holes, like the
one at the centre of our own Milky Way galaxy, with a mass of around
4000000 times the mass of our Sun. The total entropy in such objects
completely swamps that in the CMB, which had previously been
thought to represent the dominant contribution to the entropy present in
the universe. Thus, the entropy has greatly increased via gravitational
condensation from what it was at the creation of the CMB.

This relates to the second feature of the CMB referred to above,
namely its closely uniform temperature over the whole sky. How closely
uniform is it? There is a slight temperature variation understood as a
Doppler shift, coming from the fact that the Earth is not exactly at rest
with respect to the mass distribution of the universe as a whole. The
Earth’s motion is composed of various contributions, such as its motion
about the Sun, the Sun’s motion around the Milky-Way galaxy, and the
galaxy’s motion due to local gravitational influences of other relatively
nearby mass distributions. All combine together to provide what is referred
to as the Earth’s ‘proper motion’. This leads to a very slight increase of
the apparent temperature of the CMB in the direction in the sky that we
are moving towards,'>?°! and a very slight decrease in the direction in
the sky that we are moving away from, and an easily calculated pattern
of slight temperature alterations over the whole sky. Correcting for this,
we find a CMB sky that has an extraordinarily uniform temperature over
the sky, with deviations of the order of only a few parts in 10°.

This tells us that, at least over the surface of last scattering, the
universe was extraordinarily uniform, like the right-hand picture of Fig.
2.8(a) and also like the left-hand picture Fig. 2.8(b). It is reasonable to
assume, therefore, that so long as we can ignore the influences of gravity,
the material content of the universe (at last scattering) was indeed at
as high an entropy as it could achieve on its own. Gravitational influ-
ences would, after all, be small because of the uniformity, but it was
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this very uniformity in the matter distribution that provided the poten-
tial for enormous subsequent entropy increases when gravitational influ-
ences later come into play. Our picture of the entropy of the Big Bang
is therefore completely changed once we consider the introduction of
gravitational degrees of freedom. It is the assumption that our universe,
overall, is very closely in accord with the spatial homogeneity and
isotropy—sometimes referred to as the ‘cosmological principle’>2!
basic to FLRW cosmology and, in particular, central to the Friedmann
models discussed in §2.1—that implies the huge suppression of gravi-
tational degrees of freedom in the initial state. This early spatial unifor-
mity represents the universe’s extraordinarily low initial entropy.

A natural question to ask is: what on earth does that cosmological
uniformity have to do with our familiar Second Law, which seems to
permeate so much of the detailed physical behaviour in the world we
know? There are multitudes of commonplace instances of the Second
Law that would seem to bear no relation to the fact that gravitational
degrees were suppressed in the early universe. Yet the connection is
indeed there, and it is actually not so hard to trace back these common-
place instances of the Second Law to the uniformity of the early universe.

Let us consider, as an example, the egg of §1.1, perched on the edge
of a table, about to fall off and smash on the floor below (see Fig. 1.1).
The entropy-raising process of the egg rolling off the table and smashing
is enormously favoured, probabilistically, provided that we are prepared
to assume that the egg started in the very low-entropy state of being
perched, unbroken, at the edge of the table. The puzzle of the Second
Law is not the raising of the entropy following that event; the puzzle
lies in the event itself, i.e. the question of how the egg happened to find
itself in this extremely low-entropy state in the first place. The Second
Law tells us that it must have arrived in this very improbable state through
a sequence of other states that had been even more improbable prior to
this, and getting more so the farther back in time we examine the system.

There are basically two things to explain. One is the question of how
the egg got up on the table, and the other is how the low-entropy struc-
ture of that egg itself came about. Indeed, the material of an egg (taken
to be a hen’s egg) has been superbly organized into a perfect package
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of appropriate nourishment for an intended chick. But let us start with
what may seem to be the easier part of the problem, namely that of how
the egg found itself up on the table. The likely answer would be that
some person put it there, perhaps a little carelessly, but human inter-
vention was the probable cause. There is clearly a lot of highly organ-
ized structure in a functioning human being, which suggests a low entropy,
and the placing of the egg on the table would have taken only a very
little from the rather large reservoir of low entropy in the relevant system,
consisting of a reasonably well-fed person and a surrounding oxygen-
laden atmosphere. The situation with the egg itself is somewhat similar,
in that the egg’s highly organized structure, superbly geared to supporting
the burgeoning life of a presumed embryo within it, is very much part
of the grand scheme of things that keeps life going, on this planet. The
entire fabric of life on Earth requires the maintaining of a profound and
subtle organization, which undoubtedly involves entropy being kept at
a low level. In detail, there is an immensely intricate and interconnected
structure, which has evolved in keeping with the fundamental biological
principle of natural selection and with many detailed matters of chem-
istry.

What, you might well ask, do such matters of biology and chemistry
have to do with the uniformity of the early universe? Biological compli-
cation does not allow the system as a whole to violate the general laws
of physics, such as the law of conservation of energy; moreover, it cannot
provide escape from the constraints imposed by the Second Law. The
structure of life on this planet would run rapidly down were it not for a
powerful low-entropy source, upon which almost all life on Earth depends,
namely the Sun.>??! One tends to think of the Sun as supplying the Earth
with an external source of energy, but this is not altogether correct, as
the energy that the Earth receives from the Sun by day is essentially equal
to that which the Earth returns to the darkness of space!**! If this were
not so, then the Earth would simply heat up until it reaches such an equi-
librium. What life depends upon is the fact that the Sun is much hotter
than the darkness of space, and consequently the photons from the Sun
have a considerably higher frequency (namely that of yellow light) than
the infra-red photons that Earth returns to space. Planck’s formula E=hv
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(see §2.3) then tells us that, on average, the energy carried in by indi-
vidual photons from the Sun is considerably greater than the energy carried
out by individual photons returning to space. Thus, there are many more
photons carrying the same energy away from Earth than there are that
carry it in from the Sun. See Fig. 2.9. More photons imply more degrees
of freedom and therefore a larger phase-space volume. Accordingly,
Boltzmann’s S=klogV, (see §1.3) tells us that energy coming in from the

Sun carries a considerably lower entropy than that returning to space.

Fig. 2.9 Photons arriving at the Earth’s surface from the Sun have higher energy
(shorter wavelength) than those returned to space by the Earth. Given an overall
energy balance (the Earth does not get hotter over time), there must be more photons
leaving than arriving; that is, the energy arriving has lower entropy than that departing.

Now, on Earth, the green plants have, by the process of photosynthesis,
found a way of converting the relatively high-frequency photons coming
from the Sun to photons of a lower frequency, using this gain in low
entropy to build up their substance by extracting carbon from CO: in the
air and returning it as O>. When animals eat plants (or eat other animals
that eat plants), they use this source of low entropy, and the O, to keep
down their own entropy.***! This applies to humans, of course, and also
to chickens, and it supplies the source of low entropy needed for the
construction of our unbroken egg and for it to be placed on the table!

So what the Sun does for us is not simply to supply us with energy,
but to provide this energy in a low-entropy form, so that we (via the
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green plants) can keep our entropy down, this coming about because the
Sun is a hot spot in an otherwise dark sky. Had the entire sky been of
the same temperature as that of the Sun, then its energy would have been
of no use whatever to life on Earth. This applies, also, to the Sun’s ability
to raise water from the oceans high up into the clouds, which again
depends crucially on this temperature difference.

Why is the Sun a hot spot in the dark sky? Well, there are all sorts
of complicated processes going on in the Sun’s interior, and the thermo-
nuclear reactions that result in hydrogen being converted to helium play
an important part in this. However the key issue is that the Sun is there
at all, and this has come about from the gravitational influence which
holds the Sun together. Without thermonuclear reactions, the Sun would
still shine, but shrink and get much hotter, and have a far shorter life.
On Earth, we clearly gain from these thermonuclear reactions, but they
would not even have the chance to take place were it not for the gravi-
tational clumping that produced the Sun in the first place. Accordingly,
it is the potential for stars to form (albeit via somewhat complicated
processes in appropriate regions in space), through the relentless entropy-
raising process of gravitational clumping, from initial material that started
off in a very uniform gravitationally low-entropy state.

This all comes about, ultimately, from the fact that we have been
presented with a Big Bang of a very special nature, the extreme (rela-
tive) lowness of its entropy being manifested in the fact that its gravita-
tional degrees of freedom were indeed not initially activated. This is a
curiously lop-sided situation, and to understand it better we shall try to
dig a little more deeply, in the next three sections, into Einstein’s beau-
tiful curved-space-time description of gravity. Then, in §2.6 and §3.1, I
shall return to the issue of the nature of this extraordinary specialness
that is actually exhibited in our Big Bang.
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2.3 Space-time, null cones, metrics,
conformal geometry

When, in 1908, the distinguished mathematician Hermann Minkowski—
who had coincidentally been one of Einstein’s teachers at the Zurich
Polytechnic—demonstrated that he could encapsulate the basics of special
relativity in terms of an unusual type of 4-dimensional geometry, Einstein
was less than enthusiastic about the idea. But later he realized the crucial
importance of Minkowski’s geometric notion of space-time. Indeed, it
formed an essential ingredient of his own generalization of Minkowski’s
proposal to provide the curved space-time basis of his general theory of
relativity.

Minkowski’s 4-space incorporated the standard three dimensions of
space with a fourth dimension to describe the passage of time.
Accordingly, the points of this 4-space are frequently referred to as events,
since any such point has a temporal as well as a spatial specification.
There is not really anything very revolutionary about this, just in itself.
But the key point of Minkowski’s idea—which was revolutionary—is
that the geometry of his 4-space does not separate out naturally into a
time dimension and (more significantly) a family of ordinary Euclidean
3-spaces, one for each given time. Instead, Minkowski’s space-time has
a different kind of geometric structure, giving a curious twist to Euclid’s
ancient idea of geometry. It provides an overall geometry to space-time,
making it one indivisible whole, which completely encodes the struc-
ture of Einstein’s special relativity.
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Thus, in Minkowski’s 4-geometry, we are not now to think of the
space-time as being simply built out of a succession of 3-surfaces, each
representing what we think of as ‘space’ at various different times (Fig.
2.10). For that interpretation, each of these 3-surfaces would describe a
family of events all of which would be taken to be simultaneous with
one another. In special relativity, the notion of ‘simultaneous’ for spatially
separated events does not have an absolute meaning. Instead, ‘simul-
taneity’ would depend upon some arbitrarily chosen observer’s velocity.

particles in uniform_motion

S «— __space, at noon
U the day after tomorrow

space, at noon

€2 {omorrow

Space, at noon

St

space, at noon
yesterday

: space, at noon
<2 — the day before yesterday

Fig. 2.10  Space-time before Minkowski.

This, of course, is at odds with common experience, for we do seem
to have a notion of simultaneity for distant events that is independent of
our velocity. But (according to Einstein’s special relativity) if we were
to move at a speed that is comparable with that of light, then events that
seem to us to be simultaneous would generally not seem to be simultan-
eous to some other such observer, with a different velocity. Moreover,
the velocities would not even have to be very large if we are concerned
with very distant events. For example, if two people stroll past each
other in opposite directions along a path, then the events on the Andromeda
Galaxy that they would each individually consider to be simultaneous
with that particular event at which they pass one another would be likely
to differ by several weeks,>*! see Fig. 2.11!
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walker A

walker B

events simultaneous

time with X, says A

several
weeks

Andromeda
Galaxy

events simultaneous

walkers pass with X, says B

at event X

Fig. 2.11 Two walkers amble past one another, but the event X of their passing
is judged by each to be simultaneous with events on Andromeda differing by several
weeks.

According to relativity, the notion of ‘simultaneous’, for distant events,
is not an absolute thing, but depends upon some observer’s velocity to
be specified, so the slicing of space-time into a family of simultaneous
3-spaces is subjective in the sense that for a different observer velocity
we get a different slicing. What Minkowski’s space-time achieves is to
provide an objective geometry, that is not dependent on some arbitrary
observer’s view of the world, and which does not have to change when
one observer is replaced by another. In a certain sense, what Minkowski
did was to take the ‘relativity’ out of special relativity theory, and to
present us with an absolute picture of spatio-temporal activity.

But for this to give us a firm picture, we need a kind of structure
for the 4-space to replace the idea of a temporal succession of 3-spaces.
What structure is this? I shall use the letter M to denote Minkowski’s
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4-space. The most basic geometrical structure that Minkowski assigned
to M is the notion of a null cone,>*%! which describes how light propa-
gates at any particular event p in M. The null cone—which is a double
cone, with common vertex at p—tells us what the ‘speed of light’ is
in any direction, at the event p (see Fig. 2.12(a)). The intuitive picture
of a null cone is provided by a flash of light, initially focusing itself
inwards precisely towards the event p (past null cone), and immedi-
ately afterwards spreading itself out from p (future null cone), like the
flash of an explosion at p, so the spatial description (Fig. 2.12(b))
following the explosion becomes an expanding succession of concen-
tric spheres. In my diagrams, I shall tend to draw null cones with their
surfaces tilted at roughly 45° to the vertical, which is what we get if
we choose space and time units so that the speed of light c=1. Thus
if we choose seconds for our time scale, then we choose a light-second
(=299792 458 metres) for our unit of distance; if we choose years for
our time scale, then we choose a light-year (=9.46 x 102 kilometres)
for our unit of distance, etc.?7!

3 - space description

Fig. 2.12 (a) Null cone at p in Minkowski’s 4-space; (b) 3-space description of
the future cone as an expanding succession of concentric spheres originating at p.

Einstein’s theory tells us that the speed of any massive particle must
always be less than that of light. In space-time terms, this means that
the world-line of such a particle—this being the locus of all the events
that constitute the particle’s history—must be directed within the null
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cone at each of its events. See Fig. 2.13. A particle may have a motion
that is accelerated at some places along its world-line, whence its world-
line need not be straight, the acceleration being expressed, in space-time
terms, as a curvature of the world-line. Where the world-line is curved,
it is the tangent vector to the world-line that must lie within the null
cone. If the particle is massless,>?® such as a photon, then its world-
line must lie along the null cone at each of its events, since its speed at
every one of its events is indeed taken to be light speed.

tangent
AN
A ~
A i
accelerating

. massive
massive particle
particles

Fig. 2.13 Null cones in M, uniformly arranged. World lines of massive particles
are directed within the cones and of massless ones along the cones.

The null cones also tell us about causality, which is the issue of deter-
mining which events are to be regarded as being able to influence which
other events. One of the tenets of (special) relativity theory is the asser-
tion that signals shall not be allowed to propagate faster than light.
Accordingly, in terms of the geometry of M, we say that an event p would
be permitted to have a causal influence on event ¢ if there is a world-
line connecting p to ¢, that is a (smooth) path from p to g lying on or
within the null cones. For this, we need to specify an orientation to the
path (indicated by attaching an ‘arrow’ to the path), that proceeds uniformly
from past to future. This requires that M’s geometry be assigned a time
orientation, which amounts to a consistent continuous separate assign-
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ment of ‘past’ and ‘future’ to the two components of each null cone. I
have labelled a past component with a ‘-’ sign and a future component
with a ‘+’ sign. This is illustrated in Figs. 2.12(a) and 2.13, where the
past null cone is distinguished in my drawings by the use of broken lines.
The normal terminology of ‘causation’ takes causal influences to proceed
in the past-to-future direction, i.e. along world-lines whose oriented tangent
vectors point on or within future null cones.>?"!

M’s geometry is completely uniform, where each event is on an equal
footing with every other event. But when we pass to Einstein’s general
theory of relativity, this uniformity is generally lost. Nonetheless, we
again have a continuous assignment of time-oriented null cones, and
again it is true that any massive particle has a world-line whose (future-
oriented) tangent vectors all lie within these future null cones. And, as
before, a massless particle (photon) has a world-line whose tangent
vectors all lie along null cones. In Fig. 2.14 I have depicted the kind of
situation which occurs in general relativity, where the null cones are not
now arranged in a uniform fashion.

/ massive particles

Fig. 2.14 Non-uniform null cones in general relativity.

We have to try to think of these cones being drawn on some kind of
ideal ‘rubber sheet’ with the null cones printed on it. We can move the
rubber sheet around and distort it in any way we like, so long as the
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deformation is done in a smooth way, where the null cones are carried
around with the rubber sheet. Our null cones determine the ‘causality
structure’ between events, and this is not altered by any such deformation
provided that the cones are thought of as being carried around with the
sheet.

A somewhat analogous situation is provided by Escher’s depiction of
the hyperbolic plane shown in Fig. 2.3(c), in §2.1, where we can imagine
Escher’s picture to be printed on such an ideal rubber sheet. We might
choose one of the devils that appears to be close to the boundary, and
move it, by such a smooth deformation of the sheet, so that it comes
into the location previously occupied by one near the centre. This motion
can be made to carry all the devils into locations previously occupied
by other devils, and such a motion would describe a symmetry of the
underlying hyperbolic geometry illustrated by Escher’s picture. In general
relativity, symmetries of this kind can occur (as with the Friedmann
models described in §2.1), but this is rather exceptional. However, the
possibility of carrying out such ‘rubber-sheet’ deformations is very much
part of the general theory, these being referred to as ‘diffeomorphisms’
(or ‘general coordinate transformations’). The idea is that such deform-
ations do not alter the physical situation at all. The principle of ‘general
covariance’, which is a cornerstone of Einstein’s general relativity, is
that we formulate physical laws in such a way that such ‘rubber-sheet
deformations’ (diffeomorphisms) do not alter the physically meaningful
properties of the space and its contents.

This is not to say that all geometrical structure is lost, where the only
kind of geometry that remains for our space might be something merely
of the nature of its ropology (indeed sometimes referred to as ‘rubber-
sheet geometry’, in which the surface of a teacup would be identical to
that of a ring, etc.). But we must be careful to specify what structure is
needed. The term manifold is frequently used for such a space, of some
definite finite number of dimensions (where we may refer to a manifold
of n dimensions as an n-manifold), a manifold being smooth but not
necessarily assigned any further structure beyond its smoothness and
topology. In the case of hyperbolic geometry, there is actually a notion
of metric assigned to the manifold—a mathematical ‘tensor’ quantity
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(see also §2.6), usually denoted by the letter g—which may be thought
of as providing an assignment of a length'>*" to any finite smooth curve
in the space. Any deformation of the ‘rubber sheet’ constituting this mani-
fold would carry with it any curve C connecting a pair of points p, g
(where p and ¢ are also carried by the deformation) and the length of
the segment of C joining p to g assigned by g is deemed to be unaf-
fected by this deformation (and, in this sense, g is also ‘carried around’
by the deformation).

This length notion also implies a notion of straight line, referred to
as a geodesic, such a line / being characterized by the fact that for any
two points p and ¢ on [, not too far apart, the shortest curve (in the sense
of length provided by g) from p to ¢ is in fact the portion pg of [. See
Fig. 2.15. (In this sense, a geodesic provides the ‘shortest route between
two points’.) We can also define angles between two smooth curves (this
also being determined once g is given), so that the ordinary notions of
geometry are available to us once g has been assigned. Nevertheless, this
geometry would usually differ from the familiar Euclidean geometry.

length of curve
measured by g

angle between
curves determined

by g

Fig. 2.15 The metric g assigns lengths to curves and angles between them. The
geodesic [ provides the ‘shortest route between p and ¢’ in the metric g.

The hyperbolic geometry of Escher’s picture (Fig. 2.3(c), Beltrami—
Poincaré conformal representation) thus also has its straight lines
(geodesics). These can be understood in terms of the background
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Euclidean geometry in which this figure is represented, as circular arcs
meeting the boundary circle at right angles (see Fig. 2.16). Taking a and
b to be the endpoints of the arc through two given points p and g, the
hyperbolic g-distance between p and ¢ turns out to be

b
C log lqa||pb|

lgblIpal,
where the ‘log’ used here is a natural logarithm (2.302585. . . times the
‘logio’ of §1.2), ‘|gal’ etc. being the ordinary Euclidean distances in the
background space, and C is a positive constant called the pseudo-radius
of the hyperbolic space.

Fig. 2.16 ‘Straight lines’ (geodesics) in conformal representation of hyperbolic
geometry are circular arcs meeting the boundary circle at right angles.

But rather than specifying the structure provided by such a g, one
may assign some other type of geometry instead. The kind that will be
of most concern for us here is the geometry known as conformal geom-
etry. This is the structure that provides a measure to the angle between
two smooth curves, at any point where they meet, but a notion of ‘distance’
or ‘length’ is not specified. As mentioned above, the concept of angle is
actually determined by g, but g itself is not fixed by the angle notion.
While the conformal structure does not fix the length measure, it does
fix the ratios of the length measures in different directions at any point—
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so it determines infinitesimal shapes. We can rescale this length measure
up or down at different points without affecting the conformal structure
(see Fig. 2.17). We express this rescaling as

g Og

where () is a positive real number defined at each point, which varies
smoothly over the space. Thus g and Qg give us the same conformal
structure whatever positive  we choose, but g and Qg give us different
metric structures (if (0#1), where () is the factor of the scale change.
(The reason for () appearing in ‘squared’ form in the expression ‘Q%g’
is that the expressions for the direct measures of spatial—or temporal—
separation, as provided by g, arise from the taking of a square root (see
Note 2.30).) Returning to Escher’s Fig. 2.3(c), we find that the conformal
structure of the hyperbolic plane (though not its metric structure) is actu-
ally identical to that of the Euclidean space interior to the bounding
circle (yet differing from the conformal structure of the entire Euclidean
plane).

according to g according to Q% g
lengths differ, but angles agree

Fig. 2.17 Conformal structure does not fix length measure, but it does fix angles via
the ratio of length measures in different directions at any point. Length measure can
be rescaled up or down at different points without affecting the conformal structure.

When we come to space-time geometry, these ideas still apply, but
there are some significant differences, owing to the ‘twist’ that
Minkowski introduced into the ideas of Euclidean geometry. This twist
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is what mathematicians refer to as a change of the signature of the
metric. In algebraic terms, this simply refers to a few + signs being
changed to — signs, and it basically tells us how many of a set of n
mutually orthogonal directions, for an n-dimensional space, are to be
considered as ‘timelike’ (within the null cone) and how many ‘space-
like’ (outside the null cone). In Euclidean geometry, and its curved
version known as Riemannian geometry, we think of all directions as
being spacelike. The usual idea of ‘space-time’ involves only 1 of the
directions being timelike, in such an orthogonal set, the rest being space-
like. We call it Minkowskian if it is flat and Lorentzian if it is curved.
In the ordinary type of (Lorentzian) space-time that we are considering
here, n=4, and the signature is ‘1+3’ separating our 4 mutually orthog-
onal directions into 1 timelike direction and 3 spacelike ones.
‘Orthogonality’ between spacelike directions (and between timelike ones,
had we had more than 1 of them) means simply ‘at right angles’, whereas
between a spacelike and a timelike direction it looks geometrically more
like the situation depicted in Fig. 2.18, the orthogonal directions being
symmetrically related to the null direction between them. Physically,
an observer whose world-line is in the timelike direction regards events
in an orthogonal spacelike direction to be simultaneous.

Lorentzian-
orthogonal

Fig.2.18 ‘Orthogonality’ of spacelike and timelike directions in Lorentzian space-
time, represented in a Euclidean picture for which the null cone is right-angled.

In ordinary (Euclidean or Riemannian) geometry, we tend to think of
lengths in terms of spatial separation, which is something that we might
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perhaps use a ruler to measure. But what is a ruler, in (Minkowskian or
Lorentzian) space-time terms? It is a strip, which is not immediately the
most obvious gadget for measuring the spatial separation between two events
p and q. See Fig. 2.19. We can put p on one edge of the strip and ¢ on the
other. We can also assume that the ruler is narrow and unaccelerated, so that
the space-time curvature effects of Einstein’s (Lorentzian) general relativity
are not of relevance, and a treatment according to special relativity should
be adequate. But according to special relativity theory, in order for the
distance measure provided by the ruler to give the correct space-time sepa-
ration between p and ¢, we require that these events be simultaneous in the
rest-frame of the ruler. How can we ensure that these events are actually
simultaneous in the ruler’s rest-frame? Well, we can use Einstein’s original
type of argument for this, although he was thinking more in terms of a train
in uniform motion, than a ruler—so let us now phrase things that way too.

ruler

history .\_SN
(or train) T
time
Minkowski q p
space M
not simultaneous in
4 ruler’s rest-frame
SO separation gp is
ruler not ruler’s length

Fig.2.19 A spacelike separation between points p and g in M is not directly meas-
ured by a ruler that is a 2-dimensional strip.

Let us refer to the end of the train (ruler) containing the event p as
the front, and the end containing ¢ as the back. We imagine an observer
situated at the front, sending a light signal from an event r to the back
of the train, timed so as to arrive there precisely at the event g, where-
upon the signal is immediately reflected back to the front, to be
received by the observer at the event s. See Fig. 2.20. The observer
then judges ¢ to be simultaneous with p, in the train’s rest-frame, if
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p occurs half-way between emission and final reception of the signal,
i.e. if the time interval from r to p is precisely the same as that from
p to s. The length of the train (i.e. of the ruler) then (and only then)
would agree with the spatial interval between p and g.

equal
intervals

back front

Fig.2.20 The ruler (or train) measures the separation pg only when they are simul-
taneous, so light signals and clocks are needed instead.

We notice that not only is this a little more complicated than simply
‘laying down a ruler’ to measure the spatial separation between events, but
what is actually measured by the observer would be the fime intervals rp
and ps. These (equal) time intervals directly provide the measure of the
spatial interval pg that is being ascertained (in units where the speed of
light ¢ is taken to be unity). This illustrates the key fact about the metric
of space-time, namely that it is really something that has much more directly
to do with the measurement of #ime rather than distance. Instead of providing
a length measurement for curves, it directly provides us with a fime meas-
urement. Moreover, it is not all curves that are assigned a time measure:
it is for the curves referred to as causal, that could be the world-lines of
particles, these curves being everywhere either timelike (with tangent vectors
within the null cones, achieved by massive particles) or null (with tangent
vectors along the null cones, achieved by massless particles). What the
space-time metric g does is to assign a time measure to any finite segment
of a causal curve (the contribution to the time measure being zero for any
portion of the curve which is null). In this sense, the ‘geometry’ that the
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metric of space-time possesses should really be called ‘chronometry’, as
the distinguished Irish relativity theorist John L. Synge has suggested.>3!

It is important for the physical basis of general relativity theory that
extremely precise clocks actually exist in Nature, at a fundamental level,
since the whole theory depends upon a naturally defined metric g.[*?
In fact, this time measure is something quite central to physics, for there
is a clear sense in which any individual (stable) massive particle plays
a role as a virtually perfect clock. If m is the particle’s mass (assumed
to be constant), then we find that it has a rest energy®¥ E given by
Einstein’s famous formula

E=mc?,

which is fundamental to relativity theory. The other, almost equally
famous formula—fundamental to quantum theory—is Max Planck’s

E=hv

(h being Planck’s constant), telling us that this particle’s rest energy
defines for it a particular frequency v of quantum oscillation (see Fig.
2.21). In other words, any stable massive particle behaves as a very
precise quantum clock, which ‘ticks away’ with the specific frequency

oo 5).

in exact proportion to its mass, via the constant (fundamental) quantity ¢?/h.

particle
of mass m

Planck: E=hv
Einstein: E=mc>

v=mx(),

Fig. 2.21 Any stable massive particle behaves as a very precise quantum clock.
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In fact the quantum frequency of a single particle is extremely high,
and it cannot be directly harnessed to make a usable clock. For a clock
that can be used in practice, we need a system containing many par-
ticles, combined together and acting appropriately in concert. But the
key point is still that to build a clock we do need mass. Massless parti-
cles (e.g. photons) alone cannot be used to make a clock, because their
frequencies would have to be zero; a photon would take until eternity
before its internal ‘clock’ gets even to its first ‘tick’! This fact will be
of great significance for us later.

All this is in accordance with Fig. 2.22, where we see different iden-
tical clocks, all originating at the same event p, but moving with different
velocities which are allowed to be comparable with (but less than) the
speed of light. The bowl-shaped 3-surfaces (hyperboloids, in ordinary
geometry) mark off the successive ‘ticks’ of the identical clocks. (These
3-surfaces are analogues of spheres for Minkowski’s geometry, being
the surfaces of constant ‘distance’ from a fixed point.) We note that a
massless particle, since its world-line runs along the light cone, never
reaches even the first of the bowl-shaped surfaces, in agreement with
what has been said above.

clocks
sychronized

~—S
here p

Fig. 2.22 Bowl-shaped 3-surfaces mark off the successive ‘ticks’ of identical
clocks.

Finally, the notion of a geodesic, for a timelike curve, has the phys-
ical interpretation as the world-line of a massive particle in free motion

94



The oddly special nature of the Big Bang 2.3

under gravity. Mathematically, a timelike geodesic line [ is character-
ized by the fact that for any two points p and g on /, not too far apart,
the longest curve (in the sense of length of time provided by g) from p
to g is in fact a portion of /. See Fig. 2.23—a curious reversal of the
length-minimizing property of geodesic Euclidean or Riemannian spaces.
This notion of geodesic applies also to null geodesics, the ‘length’ being
zero in this case, and the null-cone structure of the space-time alone
is sufficient to determine them. This null-cone structure is actually
equivalent to the space-time’s conformal structure, a fact that will have
importance for us later.

Fig. 2.23 A timelike geodesic line / is characterized by the fact that for any two
points p and g on [, not too far apart, the longest local curve from p to ¢ is in fact
a portion of L.
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In most physical situations, where the effects of gravity are compara-
tively small, the null cones deviate only slightly from their locations in
Minkowski space Ml. However, for a black hole, we find a very different
situation, as I have tried to indicate in Fig. 2.24. This space-time picture
represents the collapse of an over-massive star (perhaps ten, or more,
times the mass of our Sun) which, having exhausted its resources of
internal (nuclear) energy, collapses unstoppably inwards. At a certain
stage—which may be identified as when the escape velolcity>** from
the star’s surface reaches the speed of light—the inward tilt of the null
cones becomes so extreme that the outermost part of the future cone
becomes vertical in the diagram. Tracing out the envelope of these particu-
lar cones, we locate the 3-surface known as the event horizon, into which
the body of the star finds itself to be falling. (Of course, I have had to
suppress one of the spatial dimensions, in drawing this picture, so the
horizon appears as an ordinary 2-surface, but this should not confuse the
reader.)

Because of this tilt in the null cones, we find that any particle’s world-
line or light signal originating inside the event horizon will not be able
to escape to the outside, as it would have to violate the requirements of
§2.3 in order to cross the horizon. Also, if we trace back (in time) a
light ray that enters the eye of an external observer, situated at a safe
distance from the hole, looking towards it, we find that this ray cannot
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pass backwards across the event horizon into its interior, but hovers just
above the surface, to meet the body of the star just a moment before it
plunged beneath the horizon. This would theoretically be the case no
matter how long the external observer waits (i.e. no matter how far up
the picture we place the observer’s eye), but in practice the image
perceived by the observer would become highly red-shifted and very
rapidly fade from view the later in time the observer is situated, so that
in short order the image of the star would become blackness—in accor-
dance with the terminology ‘black hole’.

horizon
observer H

singularity

collapsing matter

Fig. 2.24 Collapse of an over-massive star to a black hole. When the inward tilt
of the future cone becomes vertical in the picture, light from the star can no longer
escape its gravity. The envelope of these cones is the event horizon.

A natural question to ask is: what is to be the fate of this inward
falling mass of material in the star after it crosses the horizon? Might it
possibly indulge in some subsequent complicated activity, perhaps with
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the material swirling around, when it reaches the vicinity of the centre,
effectively leading to an outward bounce? The original model of such a
collapse, like that of Fig. 2.24, was put forward by J. Robert Oppenheimer
and his student Hartland Snyder in 1939, and it was presented as an
exact solution of the Einstein equations. However, various simplifying
assumptions had to be made in order that they could represent their solu-
tion in an explicit way. The most important (and restrictive) of these was
that exact spherical symmetry had to be assumed, so that such an asym-
metrical ‘swirling’ could not be represented. They also assumed that the
nature of the material of the star could be reasonably well approximated
as a pressureless fluid—which is referred to by relativity theorists as
‘dust’ (see also §2.1). What Oppenheimer and Snyder found, under these
assumptions, is that the inward collapse simply continues until the density
of the material becomes infinite at a point at the centre, and the accom-
panying space-time curvature accordingly also becomes infinite. This
central point, in their solution—represented by the vertical wiggly line
in the middle of Fig.2.24—is therefore referred to as a space-time singu-
larity, where Einstein’s theory ‘gives up’, and standard physics presents
us with no way of evolving the solution further.

The presence of such space-time singularities has presented physicists
with a fundamental conundrum, often viewed as the converse problem
to that of the Big-Bang origin to the universe. Whereas the Big Bang is
seen as the beginning of time, the singularities in black holes present
themselves as representing the end of time—at least as far as the fate of
that material that has, at some stage, fallen into the hole is concerned.
In this sense, we may regard the problem presented by black-hole singu-
larities to be the time-reverse of that presented by the Big Bang.

It is indeed true that every causal curve that originates within the
horizon, in the black-hole collapse picture of Fig. 2.24, when extended
into the future as far as it will go, must terminate at the central singu-
larity. Likewise, in any of the Friedmann models referred to in §2.1,
every causal curve (in the entire model), if extended as far back into the
past as it will go, must terminate (actually originate) at the Big-Bang
singularity. It would therefore appear that—apart from the black-hole
case being more local—the two situations are, in effect, time-reverses
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of one another. Yet, our considerations of the Second Law might well
suggest to us that this cannot altogether be the case. The Big Bang must
be something of extraordinarily low entropy, in comparison with the situ-
ation to be encountered in a black hole. And the difference between one
and the time-reverse of the other must be a key issue for our consider-
ations here.

Before we come (in §2.6) to the nature of this difference, an import-
ant preliminary issue must be faced. We must address the question of
whether, or to what extent, we have reason to trust the models—that of
Oppenheimer and Snyder, on the one hand, and the highly symmetrical
cosmological models such as that of Friedmann, on the other. We must
note two of the significant assumptions underlying the Oppenheimer—
Snyder picture of gravitational collapse. These are the spherical symmetry
and the particular idealization of the material constituting the collapsing
body that is taken to be completely pressure free. These two assump-
tions apply also to the Friedmann cosmological models (the spherical
symmetry applying to all FLRW models), so we may well have cause
to doubt that these idealized models need necessarily represent the
inevitable behaviour of collapsing (or exploding) matter, in such extreme
situations, according to Einstein’s general relativity.

In fact, both these issues were matters that concerned me when I started
thinking seriously about gravitational collapse in the autumn of 1964.
This had been stimulated by concerns expressed to me by the deeply
insightful American physicist John A. Wheeler, following the recent
discovery, by Maarten Schmidt, of a remarkable object>3> whose extraor-
dinary brightness and variability indicated that something approaching
the nature of what we now call a ‘black hole’ might have to be involved.
At that time, there had been a common belief, based on some detailed
theoretical work that had been carried out by two Russian physicists,
Evgeny Mikhailovich Lifshitz and Isaak Markovich Khalatnikov, that in
the general situation, where no conditions of symmetry would apply,
space-time singularities would not arise in a general gravitational collapse.
Being only vaguely aware of the Russian work, but having my doubts
that the kind of mathematical analysis that they had been employing would
be likely to lead to any definitive conclusion on this matter, I started
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thinking about the problem in my own rather more geometrical way. This
involved my trying to understand various global aspects of how light rays
propagate, how they may be focused by space-time curvature, and what
kind of singular surfaces might arise when they start to crinkle and cross
over one another.

I had earlier been thinking in these terms in relation to the steady-state
model of the universe, referred to at the beginning of §2.2. Having been
quite fond of that model, but not so fond of it as I had been of Einstein’s
general relativity—with its magnificent unification of basic space-time
geometrical notions with fundamental physical principles—I had wondered
whether there might be any possibility that the two could be made to be
consistent with one another. If one sticks to the pure smoothed-out steady-
state model, one is rapidly forced to conclude that this consistency cannot
be achieved without the introduction of negative energy densities, these
having the effect, in Einstein’s theory, of being able to spew light rays
apart, in order to counter the relentless inward curving effect of the posi-
tive energy density of normal matter (see §2.6). In a general way, the
presence of negative energy in physical systems is ‘bad news’, as it is
likely to lead to uncontrollable instabilities. So I wondered whether devi-
ations from symmetry might allow one to avoid such unpleasant conclu-
sions. However, the global arguments that can be used to address the
topological behaviour of such light-ray surfaces turn out to be so powerful,
if due care is exercised, that they can often be applied in quite general
situations to derive the same sort of conclusion as applies when this high
symmetry is assumed. The upshot was (though I never published these
conclusions) that reasonable departures from symmetry do not really help,
and so the steady-state model, even when considerable deviations from
the symmetrical smoothed-out model are allowed, cannot escape being
inconsistent with general relativity unless negative energies are present.

I had also used some similar types of argument to investigate the
different possibilities that may arise when one considers the remote future
of gravitating systems. The techniques that I was led to, involving the
ideas of conformal space-time geometry (referred to in §2.3 above and
which will have important roles to play in Part 3), also led me to consider
the focusing properties of light-ray systems>3! in general situations, so
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I began to believe that I was fairly much at home with these things, and
I turned my attention to the question of gravitational collapse. The main
additional difficulty here was that one needed some kind of criterion to
characterize situations in which the collapse had passed a ‘point of no
return’, for there are many situations in which the collapse of a body
can be overturned because pressure forces become large enough to reverse
a collapse, so that the material ‘bounces’ out again. Such a point of no
return seems to arise when the horizon forms, since gravitation has then
become so strong that it has overcome everything else. However, the
presence and location of a horizon turns out to be an awkward thing to
specify mathematically, its precise definition actually requiring behav-
iour to be examined all the way out to infinity. Accordingly, it was fortu-
nate for me that an idea occurred to me!>¥”—that of a ‘trapped
surface’—which was of a rather more local character,>*! whose pres-
ence in a space-time may be taken as a condition that an unstoppable
gravitational collapse has indeed taken place.

By use of the type of ‘light-ray/topology’ argument that I had been
developing I was then able to establish a theorem!>**! to the effect that
whenever such a gravitational collapse has taken place, singularities
cannot be avoided, provided a couple of ‘reasonable’ conditions are satis-
fied by the space-time. One of these is that the light-ray focusing cannot
ever be negative; in more physical terms this means that if Einstein’s
equations are assumed (with or without the presence of a cosmological
constant A), the energy flux across a light ray is never negative. A second
condition is that the whole system must be able to be evolved from an
open (i.e. what is called ‘non-compact’) spacelike 3-surface X. This is a
very standard situation for considering a reasonably localized (i.e. non-
cosmological) physically evolving situation. Geometrically, all we require
is that any causal curve in the space-time under consideration, to the
future of X, when extended backwards (in time) as far as it will go, must
intersect X (see Fig. 2.25). The only other requirement (apart from the
assumed existence of a trapped surface) concerns what is actually to be
meant by a ‘singularity’ in this context. Basically, a singularity simply
represents an obstruction to continuing the space-time smoothly, indef-
initely into the future,>*”! consistently with the assumptions just made.
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Cauchy 3-surface > '\f

Fig.2.25 An initial ‘Cauchy surface’ Z; any point p to its future has the property
that every causal curve terminating at p, when extended back far enough to the past,
must meet the surface.

The power of this result lies in its generality. Not only is there no
assumption of symmetry required, nor of any other simplifying condi-
tion that might make the equations easier to solve, but the nature of the
material source of the gravitational field is constrained only to be ‘phys-
ically reasonable’ according to the physical requirement that the energy
flux of this material across any light-ray must never be negative—a condi-
tion known as the ‘weak energy condition’. This condition is certainly
satisfied by the pressure-free dust assumed by Oppenheimer and Snyder,
and also by Friedmann. But it is far more general than this, and includes
every type of physically realistic classical material that is considered by
relativity theorists.

Complementary to this strength, however, is the weakness of this result
that it tells us almost nothing whatever about the detailed nature of the
problem confronting our collapsing star. It gives no clue as to the geomet-
rical form of the singularity. It does not even tell us that the matter will
reach infinite density or that the space-time curvature will become infi-
nite in any other way. Moreover, it tells us nothing even about where
the singular behaviour will begin to show itself.

To address such matters, something is needed that is much more in
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line with the detailed analysis of the Russian physicists Lifshitz and
Khalatnikov referred to above. Yet the theorem that I had found in the
late months of 1964 seemed to be in direct conflict with what they had
previously been claiming! In fact this was indeed the case, and in the
ensuing months there was much consternation and confusion. However,
all was resolved when the Russians, with the help of a younger colleague
Vladimir A. Belinski, were able to locate and then correct an error in
their previous work. Whereas it had originally seemed that the singular
solutions of Einstein’s equations were very special cases, the corrected
work concurred with the result that I had obtained, showing that the
singular behaviour was indeed the general case. Moreover, the Belinski—
Khalatnikov—Lifshitz work provided a plausible case for an extraordin-
arily complicated chaotic type of activity for the approach to a singularity
now referred to as the BKL-conjecture. Such behaviour had already been
anticipated from considerations by the American relativity theorist Charles
W. Misner—referred to as the mixmaster universe—and it seems to me
to be quite possible that at least in a broad class of possible situations,
such wild and chaotic ‘mixmaster’ activity is likely in the general case.

I shall have more to say about this matter later (in §2.6) but, for now,
we must address another issue, namely whether something like the occur-
rence of a trapped surface is actually likely to arise in any plausible situ-
ation. The original reason for anticipating that over-massive stars might
actually collapse catastrophically at a late stage of their evolution arose
from the work of Subrahmanyan Chandrasekhar, in 1931, when he showed
that the miniature, hugely dense stars known as white dwarfs (the first
known example being the mysterious dark companion of the bright star
Sirius), of mass comparable with that of the Sun but with a radius roughly
that of the Earth. White dwarfs are held apart by electron degeneracy
pressure—a quantum-mechanical principle which prevents electrons from
getting crowded on top of one another. Chandrasekhar showed that when
the effects of (special) relativity are brought in, there is a limit to the
mass that can sustain itself against gravity in this way, and he drew atten-
tion to the profound conundrum that this raises for cold masses larger
than this ‘Chandrasekhar limit’. This limit is about 1.4 Me (where Mo
denotes the mass of the Sun).
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The evolution of an ordinary (‘main sequence’) star like our Sun
involves a late stage where its outer layers swell, so that it becomes a
huge red giant, accompanied by an electron-degenerate core. This core
gradually accumulates more and more of the star’s material, and if this
does not result in Chandrasekhar’s limit being exceeded, the entire star
can end up as a white dwarf, eventually cooling down to end its exis-
tence as a black dwarf. This, indeed, is the expected fate of our own
Sun. But for much larger stars, the white-dwarf core could collapse at
some stage, owing to Chandrasekhar’s limit being exceeded, the infalling
material in the star leading to an extremely violent supernova explo-
sion (probably outshining, for a few days, the entire galaxy in which it
resides). Sufficient material might be shed, during this process, so that
the resulting core is able to be sustained at an even far greater density
(with, say, 1.5Moe compressed into a region of around 10km in diam-
eter), forming a neutron star, which is sustained by neutron degeneracy
pressure.

Neutron stars sometimes reveal themselves as pulsars (see §2.1 and
note 2.6) and many have now been observed in our galaxy. But again
there is a limit on the possible mass of such a star, this being around
1.5Mo (sometimes known as the Landau limit). If the original star had
been sufficiently massive (say more than 10 Mo), then it is very likely
that insufficient material would be blown off in the explosion, and the
core would be unable to sustain itself as a neutron star. Then there is
nothing left to stop its collapse, and in all probability a stage would be
reached in which a trapped surface arises.

Of course, this is not a definitive conclusion, and one might well argue
that not enough is known about the physics of such extraordinarily
condensed states that the material would reach before the trapped-surface
regime is reached (though only about a factor of 3 in the radius, down
from that of a neutron star). However, the case for black holes arising
is considerably stronger if we consider mass concentrations on the far
larger scale of collections of many stars near galactic centres. This is
simply a matter of how things scale. For larger and larger systems, trapped
surfaces would arise at smaller and smaller densities. There is enough
room, for example, for about a million white dwarf stars, none of which
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need be actually in contact, to occupy a region of 10° km in diameter,
and this would be small enough for a trapped surface to arise surrounding
them. The issue of ‘unknown physics’ at extremely high densities is not
really the relevant one when it comes to the formation of black holes.

There is one further theoretical issue which I have glossed over so
far. I have been tacitly assuming that the existence of a trapped surface
implies that a black hole will form. This deduction, however, depends
upon what is referred to as ‘cosmic censorship’ which, though widely
believed to be true, remains an unproved conjecture,*#! as of now. Along
with the BKL conjecture, it is probably the major unsolved issue of clas-
sical general relativity. What cosmic censorship asserts is that naked
space-time singularities do not occur in generic gravitational collapses,
where ‘naked’ means that causal curves originating at the singularity can
escape to reach a distant external observer (so that the singularity is not
shielded from external observation by an event horizon). I shall return
to the issue of cosmic censorship in §2.6.

In any case, the observational situation at the present time very strongly
favours the presence of black holes. The evidence that certain binary star
systems contain black holes of a few solar masses is rather impressive,
although it is of the somewhat ‘negative’ character that an invisible com-
ponent to the system makes its presence evident from the dynamical
motions, the mass of the invisible component being considerably larger
than could be the case for any compact object, according to standard
theory. The most impressive observations of this kind occur with the
very rapid orbital motions of observed stars around an invisible but enor-
mously massive compact entity at the centre of our Milky Way galaxy.
The speed of these motions is such that this entity must have a mass of
about 4000000 Mae! It is hard to imagine that this can be anything other
than a black hole. In addition to evidence of this ‘negative’ kind, there
are also entities of this nature that are observed to be dragging in
surrounding material, where this material shows no evidence of heating
up a ‘surface’ to the entity. The lack of a ponderable surface is clear
direct evidence for a black hole.*4?
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conformal boundaries

There is a convenient way of representing space-time models in their
entirety, especially in the case of models possessing spherical symmetry,
as in the case of the Oppenheimer—Snyder and Friedmann space-times.
This is by the use of conformal diagrams. I shall distinguish two types
of conformal diagram here, the strict and the schematic conformal
diagrams.>*¥ We shall be seeing something of the utility of each.

Let us start with the strict conformal diagrams, which can be used to
represent space-times (here denoted by M) with exact spherical symmetry.
The diagram would be a region D of the plane, and each point in the in-
terior of D would represent a whole sphere’s worth (i.e. an $*’s worth) of
points of M. To get something of a picture of what is going on, we may
lose one spatial dimension, and imagine rotating the region D about some
vertical line off to the left (see Fig. 2.26)—this line being referred to
as an axis of rotation. Then each point in D will trace out a circle (S").
This is good enough for our visual imaginations. But for the full 4-
dimensional picture of our space-time M, we would need a 2-dimensional
rotation, so each interior point of D has to trace out a sphere (S?) in M.

Often, in our strict conformal diagrams, we find that we have an
axis of rotation which is part of the boundary to the region D. Then
those boundary points on the axis—represented in the diagram as a
broken line—would each represent a single point (rather than an S?)
in the 4-dimensional space-time, so that the entire broken line would
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axis of each point e in D
rotation

describes an S?
. ) inM

“”-:um:.—:‘s'-'ig.; SR A

Fig. 2.26 Strict conformal diagram D used to represent space-times (here denoted
by M) with exact spherical symmetry. The 2-dimensional region D is rotated (through
a 2-dimensional sphere $?) to make the 4-space M.

also represent a single line in M. Fig. 2.27 gives us an impression
of how the whole space-time M is constituted as a family of 2-
dimensional spaces identical to D in rotation about the broken-line axis.

rotation axis

Fig. 2.27 The broken line on D’s boundary is a symmetry axis, each point of
which represents a single space-time point, rather than an S

We are going to think of M as a conformal space-time, and not worry
too much about the particular scaling that gives M its full metric g.
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Thus, in accordance with the final sentence of §2.3, M is provided
with a full family of (time-oriented) null cones. In accordance with this,
D itself, being a 2-dimensional subspace of M, inherits from it a
2-dimensional conformal space-time structure, and has its own ‘time-
oriented null cones’. These simply consist of a pair of distinct ‘null’
directions at each point of D that are deemed to be oriented towards the
future. (They are just the intersections of the planes defining the copies
of D with the future null cones of M; see Fig. 2.28.)

rotation axis
Tk )

Fig. 2.28 The ‘null cones’ in D, angled at 45° to the vertical, are the intersections
of those in M with an embedded D.

In a strict conformal diagram, we endeavour to arrange all these future
null directions in D to be oriented at 45° to the upward vertical. To illu-
minate the situation, I have drawn, in Fig. 2.29, a conformal diagram for
the entire Minkowski space-time M|, the radial null lines being drawn at
45° to the upward vertical. In Fig. 2.30, I have tried to indicate how this
mapping is achieved. We see that Fig. 2.29 exhibits an important feature
of conformal diagrams: the picture is of merely a finite (right-angled)
triangle, despite the entire infinite space-time M being encompassed by
the diagram. A characteristic feature of conformal diagrams is, indeed,
that they enable the infinite regions of the space-time to be ‘squashed
down’ so as to be encompassed by a finite picture. Infinity itself is also
represented in the diagram. The two bold sloping boundary lines repre-
sent past null infinity .7~ and future null infinity .7*, where every null
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geodesic (null straight line) in M acquires a past end-point on .7~ and a
future end-point on .7*. (It is usual to pronounce the letter . 7as ‘scri’—
meaning ‘script I’.)>* There are also three points, i, i, and i* on the
boundary, respectively representing past timelike infinity, spacelike infinity,
and future timelike infinity, where every timelike geodesic in Ml acquires

the past end-point i~ and future end-point i*, and every spacelike geodesic
closes into a loop via the point . (We shall be seeing, shortly, why °
must indeed be considered as being just a single point.)

Fig.2.30 To get to the normal picture of M, imagine the sloping (conical) bound-
aries pushed outwards to infinity.
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At this juncture, it may be helpful to recall the Escher print Fig. 2.3(c)
providing a conformal picture of the entire hyperbolic plane. The bounding
circle represents its infinity, in a conformally finite way, in an essentially
similar manner to the way in which .7%, .77, i~, i, and i* together repre-
sent infinity for M. In fact, just as we can extend the hyperbolic plane,
as a smooth conformal manifold, beyond its conformal boundary to the
Euclidean plane inside which it is represented (Fig. 2.31), we may also
extend M, smoothly, beyond its boundary to a larger conformal mani-
fold. In fact, M is conformally identical to a portion of the space-time
model known as the Einstein universe € (or the ‘Einstein cylinder’). This
is a cosmological model which is spatially a 3-sphere (S*) and completely
static. Figure 2.32(a) gives an intuitive picture of this model (the one
Einstein originally introduced his cosmological constant A in order to
achieve, in 1917; see §2.1) and Fig. 2.32(b) provides a strict conformal
diagram representing it. Note that in this diagram there are two separate
‘axes of rotation’, represented by the two vertical broken lines. This is
completely consistent; we just think of the radius of the S%, which each
point in the interior of the diagram represents, as shrinking down to zero
as a broken line is approached. This also serves to explain the rather

conformal picture of

infinite hyperbow
infinite Euclidean
plane\/_\

4

Fig.2.31 Extending the hyperbolic plane, as a smooth conformal manifold, beyond
its conformal boundary to the Euclidean plane inside which it is represented.
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curious-seeming fact that spatial infinity for M is conformally just the
single point i°, for the radius of the $? that it would seem to have repre-
sented has shrunk down to zero. The spatial S* cross-sections of the
space-time & arise from this procedure. Figure 2.33(a) shows how M
arises as a conformal subregion of £, and in fact how we can consider
the entire manifold € as made up, conformally, of an infinite succession
of spaces M|, where the .7* of each one is joined on to the .77, of the
next, and Fig. 2.33(b) shows how this is done in terms of strict conformal
diagrams. It will be worth bearing this picture in mind when we come
to consider the proposed model of Part 3.
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Fig. 2.32 (a) Intuitive picture of the Einstein universe £ (‘Einstein cylinder’); (b),
(c) strict conformal diagrams of the same thing.

time

Let us now consider the Friedmann cosmologies introduced in §2.1.
The different cases K>0, K=0, K<0, for A=0, are illustrated in Fig.
2.34(a),(b),(c), respectively. Singularities are here represented as wiggly
lines. Here I have introduced a notation whereby a white dot ‘<’ on the
boundary represents an entire sphere S?, whereas the black dots ‘-> (which
we already had in the case of M) represent single points. These white
dots actually represent the boundary spheres of hyperbolic space, in the
conformal representation that Escher used in the 2-dimensional case. The
corresponding cases for positive cosmological constant (A>0, where in
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2.5 Cycles of Time

Fig. 2.33 To see why #/ is a single point. (a) M arises as a conformal subregion
of €. The entire manifold £ can be considered to be made up, conformally, of an
infinite succession of spaces M; (b) shows how this is done in terms of strict
conformal diagrams.

et

(a) lwwmvv/vv\wl (b) (c)

Fig.2.34 Strict conformal diagrams for the three different cases, K>0, K=0, K<0
for A=0, of the Friedmann cosmologies.

the case K>0 we assume that the spatial curvature is not large enough to
overcome A and produce an ultimate re-collapse). These are illustrated in
Fig. 2.35(a),(b),(c). An important feature of these diagrams may be pointed
out here. The future infinity . 7* of all these models is spacelike, as is indi-
cated by the final bold boundary line being always more horizontal than
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The oddly special nature of the Big Bang 2.5

45°, in contrast with the future infinity that occurs when A=0 (in the cases
illustrated in Fig. 2.34(b),(c) and Fig. 2.29), where the boundary is at 45°,
so .7* is then a null hypersurface. This is a general feature of the relation
between the geometrical nature of .7* and the value of the cosmological
constant A, and it will have a key importance for us in Part 3.
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Fig. 2.35 Strict conformal diagrams for Friedmann models with A>0. (a) K>0;
(b) K=0; K<O.

These Friedmann models with A>0 all have a behaviour in their remote
future (i.e. near ./*) which closely approaches de Sitter space-time D, a
model universe that is completely empty of matter and is extremely
symmetrical (being a Minkowskian analogue of a 4-dimensional sphere).
In Fig. 2.36(a) I have sketched a 2-dimensional version of I, with only
one spatial dimension represented (where the full de Sitter 4-space D
would be a hypersurface in Minkowski 5-space), and I have given a strict
conformal diagram for it in Fig. 2.36(b). The steady-state model, referred
to in §2.2, is just one half of D, as shown in Fig. 2.36(c). Owing to the
‘cut’ through D that is required (jagged boundary), the steady-state model
is actually what is called ‘incomplete’, in past directions. There are ordin-
ary timelike geodesics—which could represent free motions of massive
particles—whose time measure does not extend to earlier values than
some finite value. This might well have been regarded as a worrying flaw
in the model if it had applied to future directions, since it could apply to
the future of some particle or space traveller,>*! but here we can simply
say that such particle motions were never present.
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Fig. 2.36 De Sitter space-time: (a) represented (with 2 spatial dimensions
suppressed) in Minkowski 3-space; (b) its strict conformal diagram; (c) cut in half,
we get a strict conformal diagram for the steady-state model.

Whatever view one might take on the physics of the matter, I indicate
this kind of incompleteness by a slightly jagged line in my strict conformal
diagrams. The one remaining type of line that I am using in these diagrams
is an internal dotted line, to denote a black hole’s event horizon. I am
using all these five kinds of line (broken for symmetry axis, bold for
infinity, wiggly for a singularity, slightly jagged for incompleteness, and
dotted for a black hole’s horizon) and two kinds of spot (black repre-
senting a single point in the 4-space, white tracing out an S?) consistently
in my strict conformal diagrams, as given in the key in Fig. 2.37.

A strict conformal diagram for the Oppenheimer—Snyder collapse to a
black hole is given in Fig. 2.38(a). This arises from ‘gluing together’ a portion
of a collapsing Friedmann model and a portion of the Eddington—Finkelstein
extension of the original Schwarzschild solution, as shown in the strict
conformal diagrams Fig. 2.38(b),(c); see also Fig. 2.39. Schwarzschild found
his solution of Einstein’s equations in 1916, shortly after Einstein published
the equations for his general theory of relativity. This solution describes the
external gravitational field of a static spherically-symmetrical body (such as
a star), and it can be extended inwards, as a static space-time, down to its
Schwarzschild radius
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2MG
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where M is the mass of the body and G is Newton’s gravitational constant.
For the Earth this radius would be about 9mm, for the Sun, about 3
km—but in these cases the radius would be well within the body and
would be theoretical distances of no immediate relevance to the space-
time geometry, as this Schwarzschild metric holds only for the external
region. See the strict conformal diagram Fig. 2.39(a).

symmetry axis
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/ infinity
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incompleteness

" black-hole
" horizon
*  point of
boundary
o sphere (5?)
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Fig. 2.37 Key for strict conformal diagrams.

(@) (b) @)

Fig. 2.38 The Oppenheimer—Snyder model of collapse to a black hole: (a) strict
conformal diagram constructed from gluing together; (b) left part of time-reverse
of Friedmann model (Fig. 2.34(b)) and (c) right part of Eddington—Finkelstein model
(Fig. 2.39(b)). (In local models, such as these, A is ignored, so J is treated as null.)
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(@) (b)

Fig. 2.39 Strict conformal diagrams of a spherically symmetrical (A =0) vacuum:
(a) original Schwarzschild solution, external to the Schwarzschild radius; (b) exten-
sion to Eddington—Finkelstein collapse metric; (c) full extension to Kruskal/
Synge/Szekeres/Fronsdal form.

For a black hole, however, the Schwarzschild radius would be at the
horizon. At this radius, the Schwarzschild form of the metric goes singular,
and the Schwarzschild radius was originally thought of as an actual
singularity in space-time. However it was found, initially by Georges
Lemaitre in 1927, that if we abandon the requirement that the space-
time remain static, it is possible to extend it in a completely smooth way.
A simpler description of this extension was found by Arthur Eddington
in 1930 (although he omitted to point out what it had achieved in this
respect), this description being rediscovered, and its implications clearly
enunciated, by David Finkelstein in 1958; see the strict conformal diagram
of this in Fig. 2.39(b). What is referred to as the ‘maximal extension of
the Schwarzschild solution’ (often called the Kruskal-Szekeres exten-
sion, although an equivalent, though more complicated description was
found much earlier by J.L. Synge!>9) is given in the strict conformal
diagram of Fig. 2.39(c).

In §3.4, we shall come to another feature of black holes which,
though an extremely tiny effect at the present time, will ultimately
have a crucial significance for us. Whereas according to the classical
physics of Einstein’s general relativity a black hole ought to be
completely black, an analysis carried out by Stephen Hawking in
1974 showed that when effects of quantum field theory in curved
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space-time backgrounds are brought into the picture, a black hole
ought to have a very tiny temperature 7', which is inversely propor-
tional to the hole’s mass. For a black hole of 10 Mo, for example,
this temperature would be the extraordinarily tiny, around 6 x 10°K
which may be compared with the record low temperature, as of 2006,
produced in the laboratory of ~ 102K achieved at MIT. This is about
as warm as the black holes around today are likely to be. Larger black
holes would be even colder, and the temperature of the ~4 000 000Mo
black hole at the centre of our galaxy would be only about 1.5x 10~'*
K. Taking the ambient temperature of our universe, at the present
time to be that of the CMB, we find that it has the immensely hotter
value of ~2.7K.

Yet, if we take the very very long view, and bear in mind that the
exponential expansion of our universe will, if it continues indefinitely,
lead to a vast cooling in the CMB, we would expect it to get down to
the temperature of even the largest black holes that are likely ever to
arise. After that, the black hole will start to radiate away its energy into
the surrounding space, and in losing energy it must also lose mass (by
Einstein’s E=mc?). As it loses mass, it will get hotter, and gradually,
after an incredible length of time (perhaps up to around 10'“—i.e. a
‘googol’—years, for the largest black holes around today) it shrinks away
completely, finally disappearing with a ‘pop’—this final explosion being
hardly worthy of the name ‘bang’, as it would be likely to be only around
the energy of an artillery shell which is something of an anticlimax after
all that wait!

Of course, this is extrapolating our present physical knowledge and
understanding to an enormous degree. But Hawking’s analysis is well
in accordance with accepted general principles, and these principles do
not seem to allow us to escape this overall conclusion. Accordingly, I
am accepting it as a plausible account of a black hole’s eventual fate.
Indeed, this expectation will form an important ingredient to the scheme
that I shall be presenting in Part 3 of this book. In any case, it is of rele-
vance to present a sketch of this process in Fig. 2.40, together with its
strict conformal diagram, in Fig. 2.41.
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Fig. 240 Hawking-evaporating black hole.

Fig. 2.41 Strict conformal diagram of Hawking-evaporating black hole.

Of course, most space-times do not possess spherical symmetry, and
a description in terms of a strict conformal diagram may not even supply
a reasonable approximation. Nevertheless, the notion of a schematic
conformal diagram can frequently be of considerable value for clarifying
ideas. Schematic conformal diagrams do not have the clear-cut rules that
govern the strict ones, and sometimes one needs to imagine that the
diagram is presented in 3 (or even 4) dimensions for its implications to
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be fully appreciated. The basic point is to make use of two of the ingre-
dients of conformal representations of space-times which make infinite
quantities finite. These are, on the one hand, the bringing into our finite
comprehension the infinite regions of space and time that we have seen
in our strict conformal diagrams, that have been depicted by bold-line
boundaries and, on the other, the folding out of those regions that are
infinite in a different sense, namely the space-time singularities that in
our strict diagrams have been denoted by wiggly-line boundaries. The
first has been achieved by a conformal factor (the ‘Q’ of g—Q?g in §2.3)
which has been allowed to tend smoothly to zero, so that the infinite
regions are ‘squashed’ down to something finite. The second has been
achieved, by a conformal factor that has been allowed to become infin-
ite, so that the singular regions have been rendered finite and smooth by
‘stretching out’. Of course, we may not be guaranteed that such pro-
cedures will actually work, in any particular case. Nevertheless, we shall
find that both these procedures have important roles to play in the ideas
that we shall be coming to, and the combination of the two will be central
to what I am proposing in Part 3.

To end this section, it will be useful to present one context in which
both these procedures can be particularly illuminating, namely with regard
to the issue of cosmological horizons. In fact, there are two distinct
notions that, in the cosmological context, are referred to as ‘horizons’.[248!
One of these is what is known as an event horizon; the other a particle
horizon.

Let us first consider the notion of a cosmological event horizon. It
is closely related to that of a black hole’s event horizon, though the
latter has a more ‘absolute’ character in the sense that it is less dependent
upon some observer’s perspective. Cosmological event horizons occur
when the model possess a .7+ which is spacelike as with all those
Friedmann A>0 models exhibited in the strict conformal diagrams of
Fig. 2.35 and in the de Sitter model D of Fig. 2.36(b), but the idea
applies also in situations of a spacelike .7* where no symmetry is
assumed (this being a general feature of A>0). In the schematic
conformal diagrams of Fig. 2.42(a),(b), I have indicated (for 2 or 3
space-time dimensions, respectively) the region of space-time that is in
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principle observable to an observer O (considered to be immortal!) with
world-line / terminating at a point o* on .7*. This observer’s event
horizon C~(0%) is the past light cone of 0*.>*! Any event that occurs
outside C(o*) will forever remain unobservable to O. See Fig. 2.43. We
notice, however, that the exact location of the event horizon is very
much dependent on the particular terminal point o*.

A o PR oY - .
immortal \

immortal observer O

@ \ observer O é//{ \ ®)

Fig. 2.42 Schematic conformal diagrams of cosmological event horizons occur-
ring when A>1: (a) 2-dimensional; (b) 3-dimensional.

Fig. 2.43 The event horizon of the immortal observer O represents an absolute
boundary to those events that are ever observable to O, this horizon itself dependent
on O’s choice of history. A change of mind at X can result in a different event
horizon.

Particle horizons, on the other hand, arise when the past boundary—
normally taken to be a singularity rather than infinity—is spacelike. In
fact, as may be gleaned from those strict conformal diagrams depicted
here in which singularities appear, a spacelike character is the norm for
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space-time singularities. This is closely related to the issue of ‘strong
cosmic censorship’, which I shall touch upon in the next section. Let us
call this initial singular boundary @8~. If the event o is the space-time
location of some observer O, then we may consider the past light cone
‘@ (o) of o, and see where it meets ©3~. Any particles that originate on
24~ outside this intersection will never enter the region visible to the
observer at the event o, although if O’s world-line is allowed to be
extended into the future, then more and more particles will come into
view. It is usual to consider the actual particle horizon of the event o to
be the locus traced out by idealized galaxy world-lines, originating at
the intersection of ‘@ ~(0) with 23~. See Fig. 2.44.

particle
particle horizon horizon

(a Big Bang

Big Bang 23~

Fig.2.44 Schematic conformal diagrams of particle horizons in (a) 2 dimensions,
(b) 3 dimensions.
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2.6 Understanding the way the
Big Bang was special

Let us return to the basic question that we have been trying to address
in this part, namely the issue of how our universe happened to come
about with a Big Bang that was so extraordinarily special—yet special
in what appears to have been a very peculiar way where, with regard to
gravity, its entropy was enormously low in comparison with what it
might have been, but the entropy was close to maximum in every other
respect. This issue tends to be muddied, in most modern cosmological
considerations, however, by the popular idea that in the very early stages
of the universe’s existence it underwent an exponential expansion—
referred to as cosmic inflation—during a phase lasting for a tiny time-
period somewhere between around 1076 and 10732 seconds following the
Big Bang, increasing the linear dimension of the universe by some enor-
mous factor of somewhere between 10* and 10%, or perhaps even 10'?
or so. This huge expansion is supposed to explain the uniformity of the
early universe (among other things), where practically all early irregu-
larities are taken to have been ironed out simply by the expansion.
However, these discussions seem hardly ever to be taken as addressing
the fundamental question that I have been concerned with in Part 1,
namely the origin of the extraordinary manifest specialness of the Big
Bang, which must have been initially present, in order that there be a
second law of thermodynamics. In my view, this idea underlying infla-
tion—that the uniformity in the universe that we now observe should be
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the result of (inflationary) physical processes acting in its early evolu-
tion—is basically misconceived.

Why do I say that it is misconceived? Let us examine this issue in
terms of some general considerations. The dynamics underlying infla-
tion is taken to be governed in the same general way as are other phys-
ical processes, where there are time-symmetrical dynamical laws
underlying this activity. There is taken to be a particular physical field
known as the ‘inflaton field’ that is held to be responsible for inflation,
although the precise nature of the equations governing the inflaton field
would generally differ from one version of inflation to another. As part
of the inflationary process, there would be some sort of ‘phase transi-
tion’ taking place, which may be thought of in terms of some kind of
analogy with the transition between solid and liquid states that occurs
with freezing or melting, etc. Such transitions would be regarded as
proceeding in accordance with the Second Law, and would normally be
accompanied by a raising of entropy. Accordingly, the inclusion of an
inflaton field in the dynamics of the universe does not affect the essen-
tial arguments that were being put forward in Part 1. We still need to
understand the extraordinarily low-entropy start of the universe, and
according to the arguments of §2.2 this lowness of entropy lay essen-
tially in the fact that the gravitational degrees of freedom were not
excited, at least not nearly to the extent that involved all other degrees
of freedom.

It will certainly be helpful to try to understand what a high entropy
initial state would be like, when gravitational degrees of freedom are
to be taken into consideration. We can get some appreciation of this if
we imagine the time-reversed context of a collapsing universe, since
this collapse, if taken in accordance with the Second Law, ought to lead
us to a singular state of genuinely high entropy. It should be made clear
that our mere consideration of a collapsing universe has nothing to do
with whether our actual universe will ever re-collapse, like the closed
A=0 Friedmann model of Fig. 2.2. This collapse is being taken simply
as a hypothetical situation, and it is certainly in accord with Einstein’s
equations. In a general collapse situation, like the general collapses to
a black hole that we considered in §2.4, we may expect all sorts of
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irregularities to emerge, but when local regions of material get suffi-
ciently concentrated, trapped surfaces are likely to come about and
space-time singularities are expected to arise.>*°! Whatever density irreg-
ularities are present initially would intensify greatly, and the final singu-
larity would be expected to be that coming from an extraordinary mess
of congealing black holes. It is here that the considerations of Belinski,
Khalatnikov and Lifshitz might well come into play. And if the BKL
conjecture is correct (see §2.4), then some extremely complicated singu-
larity structure is indeed to be expected.

I shall return to this issue of singularity structure shortly, but for the
moment, let us consider the relevance of inflationary physics. Let us
focus attention on the state of the universe at, for example, the time of
decoupling, when the radiation that we now see as the CMB was produced
(see §2.2). In our actual expanding universe, there was a very great
uniformity in the matter distribution at that time. This is clearly taken
to be a puzzle—for otherwise there would be no point in introducing
inflation in order to explain it! Since it is accepted that there is some-
thing to explain, we must consider that there might, instead, have been
enormous irregularities at that time. The inflationist’s claim would have
to be that the presence of an inflaton field actually renders such irregu-
larities highly improbable. But is this really the case?

Not at all, for we can imagine this situation of a highly lumpy matter
distribution at the time of decoupling, but with time reversed, so that this
picture represents a very irregular collapsing universe.>>!) As our imag-
ined universe collapses inwards, the irregularities will become magnified,
and deviations from FLRW symmetry (see §2.1) will become more and
more exaggerated. Then, the situation will be so far from FLRW homo-
geneity and isotropy that the inflationary capabilities of the inflaton field
will find no role, and (time-reversed) inflation will simply not take place,
since this depends crucially on having an FLRW background (at least
with regard to calculations that have actually been carried through).

We are therefore led to the clear implication that our irregular collapsing
model will indeed collapse down to a state involving a horrendous mess
of congealing black holes, this leading to a highly complicated enormously
high-entropy singularity, very possibly of a BKL type, which is quite unlike
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the highly uniform low-entropy singularity of closely FLRW form that we
seem to have had in our actual Big Bang. This would happen quite inde-
pendently of whether or not an inflaton field is present in the allowed phys-
ical processes. Thus, time-reversing our imagined collapsing lumpy universe
back again, so as to obtain a possible picture of an expanding universe, we
find that it starts with a high-entropy singularity which, it seems, could
have been an initial state for our actual universe and, indeed, would be a
far more probable initial state (i.e. of much larger entropy) than the Big
Bang that actually occurred. The black holes that congeal together in the
final stages of our envisaged collapse would, when time-reversed to an
expanding universe, provide us with the image of an initial singularity
consisting of multiply bifurcating white holes!>>* A white hole is the time-
reverse of a black hole, and I have indicated the sort of situation that this
provides us with in Fig. 2.45. It is the total absence of such white-hole
singularities that singles out our Big Bang as being so extraordinarily special.

emerging matter

7. 1

singularit—y\"j horizon
Fig. 2.45 A hypothetical ‘white hole’, which is the time-reverse of a black hole,
such as depicted in Fig. 2.24. It violently disobeys the Second Law. Light cannot
enter through the horizon, so light from the torch at the lower left gets in only after
the hole explodes to ordinary matter.
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In terms of phase-space volume, initial singularities of this nature
(with multiply bifurcating white holes) would occupy a stupendously
larger region than do those resembling the singularity that gave rise to
our actual Big Bang. The mere potential presence of an inflaton field
certainly cannot provide the power to ‘iron out’ the irregularities of such
a conglomeration of white-hole singularities. This can be said with confi-
dence quite apart from any detailed considerations of the nature of the
inflaton field. It is just an issue of having equations that can be evolved
equally in either direction in time, up until a singular state is reached.

But we can certainly say more about the actual enormity of the phase-
space volume, if we take into account the entropy values, and therefore
the phase-space volumes, that are actually assigned to black holes,
according to the well-accepted Bekenstein—Hawking formula for the
entropy value of a black hole. For a non-rotating hole of mass M, this
entropy is

8kGm?

M?,
ch

Spu=

whereas the entropy lies between this value and one-half of it if the hole
is rotating, depending on the amount of the rotation. The fraction
preceding ‘M?’ is just a constant, where k, G, and h are the constants of
Boltzmann, Newton, and Planck, respectively, ¢ being the speed of light.
In fact, we can rephrase this entropy formula in a more general form

where A is the surface area of the horizon and A=h/2m, this formula
being applicable whether or not the hole is rotating. In the Planck units
to be introduced at the end of §3.2, we have

Seu=A/4.

Although there is, in my opinion, still no completely satisfactory account
of this entropy in terms of the counting of internal black-hole states, >3
such an entropy value is nevertheless an essential ingredient to the
maintaining of a consistent Second Law in a quantum physical world
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external to the black hole. As mentioned already in §2.2, easily the
largest contribution to the entropy of the present universe comes from
the contributions from large black holes in galactic centres. If a total
mass consisting of that lying within our present observable universe
(that lying within our present particle horizon; see §2.5) were to form
a black hole, this would attain an entropy of roughly 10>, and we
may consider this to provide a rough lower limit to entropy that would
be achievable by our collapsing universe model involving the same
amount of material. The phase-space volume corresponding to this
would then be something like[>>%

1010124

(because of the logarithm in Boltzmann’s entropy formula, given in §1.3),
whereas the region of phase space corresponding to the state of the actual
observed universe at the time of decoupling, for the same body of matter,
namely that in the observed CMB, had a volume no greater than about

101039

The probability of finding ourselves in a universe of such a degree of
specialness, if it had come about just by chance,>3! has the utterly
absurdly tiny value of around 1/10'° irrespective of inflation. This is
the kind of figure that needs some completely different kind of theoret-
ical explanation!

There is, however, one further issue that may be considered to have
importance here. This is the question of whether an initial singularity of
such a complicated white-hole-type structure could reasonably be referred
to as an ‘instantaneous event’. The question is basically a matter of
whether such a singularity, when viewed as some kind of past ‘conformal
boundary’ to the space-time, can be appropriately thought of as ‘space-
like’. Such a spacelike initial singularity could then be taken to repre-
sent the zero of some cosmic time coordinate and regarded as the ‘moment’
of such a highly irregular big bang.

In fact, the time-reverse of an Oppenheimer—Snyder collapse indeed
has a spacelike initial singularity, as is clear from its strict conformal
diagram Fig. 2.46, this being the time-reverse of Fig. 2.38(a). Moreover,
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it is a feature of general BKL singularities that they seem to have this
spacelike character. More generally still, a spacelike nature is expected
for generic singularities (allowing for their possibly being null in places)
on the basis of strong cosmic censorship,>3% a yet unproved conjecture
for solutions of Einstein’s equations (referred to already in §2.4) which
tells us that ‘naked singularities’ do not occur in generic gravitational
collapse, the singularities that result being always hidden from direct
observation, as by a black hole’s event horizon. Strong cosmic censor-
ship tells us that these singularities ought indeed to be spacelike, at least
in general. In accordance with this expectation, it seems to me to be
perfectly reasonable to refer to such a white-hole-ridden initial singu-
larity as indeed being an instantaneous event.

Fig. 2.46 Strict conformal diagram of the white hole in Fig. 2.45.

An important question now arises: what geometrical criterion distin-
guishes the kind of ‘smooth’ singularity that appears to be what char-
acterized the very low-entropy singularity of our Big Bang, from the
more general high-entropy type of singularity that arises in the white-
hole-ridden time-reversed collapses just considered? We need some clear-
cut way of saying that ‘the gravitational degrees of freedom were not
activated’. But for this, we need to identify the mathematical quantity
that actually measures ‘gravitational degrees of freedom’.

A good analogy for the gravitational field is the electromagnetic field,
which resembles it in many significant ways, although there are, never-
theless, some important differences. The electromagnetic field is
described, in relativity physics, by a tensor quantity F, referred to as the
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Maxwell field tensor—after the great Scottish scientist James Clerk
Maxwell, who first found, in 1861, the equations satisfied by the
electromagnetic field, and he showed that these explain the propagation
of light. We may recall that in §2.3, we encountered another tensor
quantity, namely the metric tensor g. Tensors are essential for general
relativity theory, as they provide mathematical descriptions of geometrical
or physical entities in ways that are unaffected by (or ‘carried along’ by)
the ‘rubber-sheet’ deformations (diffeomorphisms) that we considered in
§2.3. The tensor F is determined by 6 independent numbers per point
(3 for the components of the electric field at that point and 3 more for
the magnetic field). The metric tensor g has 10 independent components
per point. In standard tensor notation, it is usual to denote the collec-
tion of components of the metric by g, or some such, with two lower
indices (and it has a symmetry ga»=gno). In the case of Maxwell’s tensor
F, the collection of components would be denoted by Fu, (with the anti-
symmetry Fu=—F,). Each of these tensors has a valence [3], which
refers to the fact that there are just two lower indices. But tensors with
upper indices can occur also, a [F]-tensor being described by a collec-
tion of components denoted by an entity with p upper indices and g
lower indices. There is an algebraic procedure known as contraction (or
transvection) which allows us to connect a lower index to an upper one
(rather in the manner of chemical bonding), thereby removing these two
indices from the final expression—but it is not my purpose here to go
into the algebraic operations of the tensor calculus.

The degrees of freedom in the electromagnetic field are indeed meas-
ured by the Maxwell tensor F, but in Maxwell theory there is also a
source for the electromagnetic field, known as the charge-current vector
J. This may be thought of as a []-tensor, whose 4 components per point
describe the 1 component of electric charge density together with the
3 components of electric current. In a stationary situation, the charge
density acts as the source of electric field and the current density as the
source for the magnetic field, but things get more complicated when
the situation is not stationary.

We now ask for the analogues of F and J in the case of the gravita-
tional field, as described by FEinstein’s general theory of relativity. In
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this theory there is a curvature to space-time (which can be calculated
once one knows how the metric g varies throughout the space-time),
described by a [J]-tensor R, called the Riemann(-Christoffel) tensor, with
somewhat complicated symmetries resulting in R having 20 independent
components per point. These components can be separated into two parts,
constituting a [J]-tensor C, with 10 independent components, called the
Weyl conformal tensor, and a symmetric [3]-tensor E, also with 10 inde-
pendent components, called the Einstein tensor (this being equivalent to
a slightly different [J]-tensor referred to as the Ricci tensor>3"). According
to Einstein’s field equations, it is E that provides the source to the grav-
itational field. This is normally expressed>¥in the form

_8nG

C4

E

T+Ag,

or, in the Planck units of §3.2, simply
E=8nT+Ag,

where A is the cosmological constant, and where the energy [J]-tensor
T represents the mass-energy density and other quantities related to it
via requirements of relativity; in other words, E (or equivalently, the
energy tensor T) is the gravitational analogue of J. The Weyl tensor C
is then the gravitational analogue of Maxwell’s F.

We may ask what directly observable effects C and E might have,
like magnetic fields being shown up by patterns of iron filings or by the
pointing of a compass needle, and like electric fields being revealed by
their effect on pith balls, etc. In fact, in an almost literal sense, we can
actually see the effects of E and more particularly C, since these tensors
have a direct and distinguishing effect on light rays—and in this respect
E and T are completely equivalent, since Ag has no effect on light rays.
It may justly be said that the first clear evidence in support of general
relativity was such a direct observation—which came from (Sir) Arthur
Eddington’s expedition to the Island of Principe in order to view, during
the solar eclipse of 1919, the apparent displacement of stars’ locations
due to the Sun’s gravitational field.

Basically, E acts as a magnifying lens, whereas C acts as a purely
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astigmatic lens. These effects are well described if we imagine how light
rays are affected as they pass near or through a massive body, such as
the Sun. Of course ordinary light will not actually propagate through the
body of the Sun (or of the obscuring Moon, during the eclipse, for that
matter), so we do not directly observe those particular rays in this case.
But we can imagine that if we could actually see the star field through
the Sun, then that field would be magnified slightly, owing to the pres-
ence of E, where the gravitating material of the Sun’s actual body resides.
The pure effect of E would be simply to magnify one’s ‘view’ of what
lies behind, without distortion.>>”! However, when it comes to the distor-
tion of the image of the distant star field outside the Sun’s apparent disc
(and this is what is actually observed) we find a gradual reduction of
the outward displacement the farther out we look, and this leads to an
astigmatic distortion of the distant star field. These effects are illustrated
in Fig. 2.47. The distortion of the field outside the Sun’s limb makes a
small circular pattern in the distant star field appear elliptical, and this
ellipticity is a measure of the amount of Weyl curvature C intercepted
by the line of sight.

—~ ~
Weyl
distortion Einstein’
magnification

Fig. 2.47 The presence of Weyl curvature surrounding a gravitating body (here
the Sun) can be seen in the distorting (non-conformal) effect that it has on the back-
ground field.

In fact, this gravitational lensing effect, originally predicted by Einstein,

has become an extremely important tool in modern astronomy and
cosmology, since it provides a means of measuring mass distributions
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that might even be otherwise completely invisible. In most of these cases,
the distant background field consists of large numbers of very distant
galaxies. The objective is to ascertain whether significant ellipticity has
been introduced into the appearance of this background field, and to use
this to estimate the actual intervening mass distribution whose gravita-
tional field has caused the pattern of ellipticities. A snag, however, is
that galaxies themselves tend to be rather elliptical, so one cannot usually
tell whether or not an individual galaxy’s image has been distorted.
However, with large numbers of background field galaxies, statistics can
be brought in, and often some very impressive estimates of mass distri-
butions can be obtained in this way. On occasion, it is even possible to
judge these things by eye, and some impressive examples are provided
in Fig. 2.48, where the patterns of ellipticity make the presence of lensing
sources particularly evident. One important application of this technique
is in the mapping of dark matter distributions (see §2.1), since these are
otherwise invisible.!>¢%!

The fact that C introduces ellipticity into the images along light
rays is indicative of its role as the quantity describing conformal curva-
ture. At the end of §2.3 it was remarked that the conformal structure
of space-time is in fact its null-cone structure. The conformal curva-
ture of space-time, namely C, therefore measures the deviation of this
null-cone structure from that of Minkowski space M. We see that the
nature of this deviation is that it introduces ellipticity into bundles of
light rays.

Let us now come to the condition that we require, in order to char-
acterize the very special nature of the Big Bang. Basically, we require
a statement that gravitational degrees of freedom were unexcited at
the Big Bang, which means saying something like ‘the Weyl curva-
ture C vanished there’. For many years, I have indeed been proposing
that some such condition ‘C=0’ holds at initial-type singularities, as
opposed to what evidently happens in the ‘final-type’ singularities
occurring in black holes for which C is likely to become infinite, as
it does towards the singularity in the Oppenheimer—Snyder collapse,
and perhaps diverging extremely wildly as in BKL singularities.[2¢]
In general terms, this condition of the vanishing of C at initial-type
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Fig. 248 Gravitational lensing: (a) galaxy cluster Abell 1689; (b) galaxy cluster
Abell 2218.
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singularities—which I have termed the Weyl curvature hypothesis (or
WCH)—seems appropriate, but it is a little awkward that there are in
fact numerous different versions of such a statement. The trouble is,
basically, that C is a tensor quantity and it is hard to make unam-
biguous mathematical assertions about how such quantities behave at
space-time singularities, where the very notion of a tensor, in any ordi-
nary sense, loses its meaning.

It is fortunate, therefore, that my Oxford colleague Paul Tod has made
a detailed study of a quite different, and mathematically much more
satisfactory way of formulating a “WCH’. This is to say, more or less,
that there is a Big Bang 3-surface @3-, which acts as a smooth past
boundary to the space-time M, when M is considered as a conformal
manifold, just as happens in the exactly symmetrical FLRW models as
is exhibited in the strict conformal diagrams of Fig. 2.34 and Fig. 2.35,
but where the FLRW symmetry of these particular models is now not
assumed. See Fig. 2.49. Tod’s proposal at least constrains C to be finite
at the Big Bang (since the conformal structure at 24", is assumed to be
smooth), rather than C diverging wildly, and this statement might be
taken to be sufficient for what is required.

iy
Big Bang\{,_).
‘ <

~——

Lo~
Fig.2.49 Schematic conformal diagram of Paul Tod’s proposal for a form of “Weyl

curvature hypothesis’; asserting that the Big Bang provides a smooth boundary B
to the space-time M.

To make this condition mathematically clearer, it is convenient to
assert it in the form that the space-time can be continued smoothly, as
a conformal manifold, a little way prior to the hypersurface 23~. To
before the Big Bang? Surely not: the Big Bang is supposed to represent
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the beginning of all things, so there can be no ‘before’. Never fear—
this is just a mathematical trick. The extension is not supposed to have
any physical meaning!

Or might it . . .?
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3.1 Connecting with infinity

Physically, what would the material universe have been actually like, far
far back in time, very soon after the Big Bang? One thing in particular:
it would have to have been hor—extremely hot. The kinetic energy in
the motions of particles around at that time would have been so enor-
mous as to have completely overwhelmed the particles’ comparatively
tiny rest energies (E=mc?, for a particle of rest-mass m). Thus, the rest-
mass of the particles would have been effectively irrelevant—as good as
zero as far as the relevant dynamical processes are concerned. The
contents of the universe, at extremely early times, would have consisted
of effectively massless particles.

To phrase this issue in somewhat different terms, we may bear in mind
that, according to current particle-physics ideas!*!! about how the masses
of basic particles actually come about, a particle’s rest-mass ought to
arise through the agency of a special particle (or perhaps a family of
such special particles) referred to as the Higgs boson(s). Thus, the stan-
dard view about the origin of the rest-mass of any fundamental particle
of Nature is that there is a quantum field associated with the Higgs that
has the effect, through a subtle quantum-mechanical ‘symmetry-breaking’
procedure, of actually assigning a mass to other particles—a mass which
they would not possess were it not for the Higgs. The Higgs would itself
be thereby assigned its own particular mass (or, equivalently, rest energy).
But in the very early universe, when the temperature was so high as to
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have provided energies greatly in excess of this Higgs value, all par-
ticles would then, according to standard ideas, indeed have become effec-
tively massless, like a photon.

Massless particles, as we may recall from §2.3, do not appear to be
particularly concerned with the full metric nature of space-time,
respecting merely its conformal (or null-cone) structure. To be a little
more explicit (and careful) about this, let us consider the primary mass-
less particle—the photon—which, in fact, remains massless today.??
To understand photons properly, we need to think of them in the context
of the weird but precise theory of quantum mechanics (or, more correctly,
quantum field theory, QFT). I cannot go into any details of QFT here
(although I shall address some basic quantum issues in §3.4); our main
concern is the physical field, of which photons provide the quantum
constituents. This field is Maxwell’s electromagnetic field, as described
by the tensor F, referred to in §2.6. Now, it turns out that Maxwell’s
field equations are completely conformally invariant. What this
means is that whenever we make the replacement of the metric g by a
conformally related one g

g g
the new metric being (non-uniformly) rescaled
g=0g,

where Q) is a positive-valued and smoothly varying scalar quantity on
the space-time (see §2.3), we can find appropriate scaling factors for
both the field F and its source, the charge-current vector J, so that exactly
the same Maxwell equations hold as before,”*3 but now with all oper-
ations defined in terms of g rather than g. Accordingly, any solution of
the Maxwell equations, with one particular choice of conformal scale,
goes over to an exactly corresponding solution when any other choice
of conformal scale is made. (This will be explained in slightly more
detail in §3.2, and more fully in Appendix A6.) Moreover, at a primi-
tive level, this is basically consistent with QFT,*# in that the corres-
pondence with the particle (i.e. photon) description also carries over to
the hatted metric g, with individual photon going over to individual
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photon. Thus, the photon itself does not even ‘notice’ that a local scale
change has been made.

Maxwell theory is, indeed, conformally invariant in this strong sense,
where the electromagnetic interactions that couple electric charges with
the electromagnetic field are also insensitive to local changes of scale.
Photons, and their interactions with charged particles, do need space-time
to have a null-cone structure—i.e. a conformal space-time structure—
in order that their equations can be formulated, but they do not need the
scale factor that distinguishes one actual metric from another, consistent
with this given null-cone structure. Moreover, exactly the same invari-
ance holds for the Yang—Mills equations that are considered to govern not
only the strong interactions that describe the forces between nucleons
(protons, neutrons, and their constituent quarks) and other relevant strongly
interacting particles, but also the weak interactions that are responsible
for radioactive decay. Mathematically, Yang—Mills theory®3! is basically
just Maxwell theory with some ‘extra internal indices’ (see Appendix A7),
so that the single photon is replaced by a multiplet of particles. In the
case of strong interactions, things called quarks and gluons are the respec-
tive analogues of the electrons and photons of electromagnetic theory.
The quarks, but not the gluons, are massive, with masses considered to
be directly linked to the Higgs. In the standard theory of weak interac-
tions (called ‘electro-weak’ theory, as electromagnetic theory is now also
incorporated into this theory), the photon is considered to be part of a
multiplet containing three other particles, all of which are massive, referred
to as W', W-, and Z. Again, these masses are considered to be coupled
to that of the Higgs. Thus, according to current theory, when that mass-
providing ingredient is removed, at the extremely high temperatures back
near the Big Bang—and, indeed, roughly at the extremely high particle
energies that are proposed would be reached by the LHC (Large Hadron
Collider) particle accelerator in CERN, based in Geneva, when it is at
full power®®—then full conformal invariance should be restored. Of
course, the details of this depend upon our standard theories of these
interactions being appropriate, but this seems to be a not unreasonable
assumption, as our ideas of particle physics stand at the moment. In any
case, even if it turns out (for example when detailed results from the LHC
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become known and understood) that things are not quite as current theory
suggests, it still remains probable that when energies get higher and higher,
rest-masses become more and more irrelevant, physical processes
becoming dominated by conformally invariant laws.

The upshot of all this is that close to the Big Bang, probably down
to around 107! seconds after that moment,">”! when temperatures exceed
about 10'°K, the relevant physics is believed to become blind to the
scale-factor (), and conformal geometry becomes the space-time struc-
ture appropriate to the relevant physical processes.*#! Thus, all this
physical activity would, at that stage, have been insensitive to local
scale changes. In a conformal picture in which the Big Bang is stretched
out, according to Tod’s proposal of (§2.6, Fig. 2.49), to become a
completely smooth spacelike 3-surface @8~ which mathematically
extends to a conformal ‘space-time’ prior to the Big Bang, the phys-
ical activity would propagate backwards in time in a mathematically
coherent way, providing a physically sensible picture, seemingly unper-
turbed by the enormous scale changes involved, into this hypothetical
pre-Big-Bang region that is being provided for it in accordance with
Tod’s proposal. See Fig. 3.1.

photons, or other effectively
massless particles

} j € post-Big-Bang phase
a_—“vv'f“ £ /.

9B

Fig. 3.1 Photons and other (effectively) massless particles/fields can propagate
smoothly from an earlier pre-Big-Bang phase into the current post-Big-Bang phase
or, conversely, we can propagate the particle/field information backwards from post-
to pre-Big-Bang phase.
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May we really suppose that we should be treating this hypothetical
region as being actually physically real? If so, what kind of space-time
region could this ‘pre-Big-Bang’ phase be? Perhaps the most immediate
suggestion might be some collapsing phase of the universe which in
some way is able to bounce back into an expanding universe at the Big
Bang. But such a picture would negate all that I have been attempting
to achieve up to this point. That picture would have our collapsing pre-
Big-Bang phase somehow ‘aimed’ with incredible precision at such a
very special ultimate state, of the same extraordinary degree of special-
ness that we appear to find in our actual Big Bang. It would represent

singularity from
wildly chaotic
black-hole riddled
(BKL?) collapse

Fig. 3.2 The type of singularity expected in a generic collapse in no way matches
a conformally smooth low-entropy big bang.

an immense violation of the Second Law for that pre-Big-Bang phase,
with entropy reducing itself down to the (relatively) extremely tiny value
that we find at the Big Bang. We recall the picture of a collapsing universe
in accordance with the Second Law that was evoked in §2.6. This would
be a thoroughly black-hole-riddled space-time that collapses to a
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singularity that in no way resembles a geometry with the required
conformal smoothness needed for the kind of matching that Tod’s proposal
requires (see Fig. 3.2). Of course, one might adopt a viewpoint for which,
in the pre-Big-Bang phase, the Second Law simply operates the other
way around in time (cf. the final paragraphs of §1.6), but that goes very
much against the grain of the overall purpose behind the enterprise under-
taken by this book. The hope is to find something more like an ‘expla-
nation’ of the Second Law, or at least some kind of rationale for it, rather
than simply decreeing that some absurdly special state occurs at some
stage during the universe’s history (namely at the ‘bounce’ moment being
considered above). Moreover, it turns out that there are also some math-
ematical difficulties with this particular kind of a ‘bounce’ proposal, as
we shall be seeing later (in §3.3, in relation to Tolman’s radiation-filled
universe models; see also Appendix B6).

No, let us try something very different. Let us try to examine the other
end of time, namely what is expected in the extremely remote future.
According to the models described in §2.1 in which there is a positive
cosmological constant A (see Fig. 2.5), our universe ought ultimately to
settle into an exponential expansion, apparently rather closely modelled
by the strict conformal diagrams of Fig. 2.35, in which there is a smooth
spacelike future conformal boundary .7*. Of course, our own universe
now possesses certain types of irregularity, the greatest local departures
from the highly symmetrical FLRW geometry being the presence of
black holes, especially the very massive ones at galactic centres. However,
in accordance with the discussion of §2.5, all black holes ought even-
tually to disappear with ‘pops’ (see Fig. 2.40 and its strict conformal
diagram Fig.2.41), even though the very largest holes might have to take
something like a googol (i.e. ~10'?) or more years before this happens.

Following that extremely long time-span, the physical contents of the
universe will, in terms of numbers of particles, consist mainly of photons,
these coming from greatly red-shifted starlight and CMB radiation, and
from the Hawking radiation that will ultimately carry away almost the
entire mass-energy of numerous huge black holes, in the form of very
low-energy photons. But there will also be gravitons (the quantum
constituents of gravitational waves) coming from close encounters
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between such black holes, especially the very big holes in galactic
centres—and these encounters will actually turn out to play a vital role
for us in §3.6. Photons are massless particles, but so also are gravitons,
and neither of these can be used to make a clock, in accordance with
the disscussion of §2.3, as illustrated in Fig. 2.21.

There will presumably also be a good measure of ‘dark matter’ around,
whatever that mysterious substance might be (§2.1, and see also §3.2 for
my own general proposal), to the extent that this material would have
survived capture by black holes. It is hard to see how such a substance,
interacting only through the gravitational field, could be of much value in
the construction of a clock. To take such a standpoint would, however,
represent a subtle change of philosophy; yet, we shall be seeing in §3.2,
that such a subtle change will in any case be a necessary feature of the
overall picture that I shall be presenting. Thus, it again begins to seem that
it might be just the conformal structure of space-time that would, in the
ultimate stages of our universe’s expansion, be what is physically relevant.

When the universe enters this apparently final stage—what one might
well call the ‘very boring era’—nothing of great interest seems to be
left for it to do. The most exciting events prior to this were the final
‘pops’ of the last tiny remnants of black holes, eventually disappearing
(it is supposed) after they had very gradually lost all their mass via the
painfully slow process of Hawking radiation. One is left with the dreadful
thought of a seemingly interminable boredom confronting the final
stages of our great universe—a universe which would have once seemed
so exciting, teeming with fascinating activity of hugely different kinds—
most of this activity occurring within beautiful galaxies, with a wonderful
variety of stars and often attendant planets, among which would be
those supporting life of some kind, with its exotic plants and animals,
some of whom having the capabilities of deep knowledge and under-
standing, and profound capabilities of artistic creation. Yet all this will
eventually die away. The final dregs of excitement will have to be the
waiting, and the waiting, and waiting, for maybe 10'® years or more,
for that final pop—perhaps of about the violence of a small artillery
shell followed by nothing but further exponential expansion, thinning
it out and cooling and emptying and cooling, and thinning out . . . until
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eternity. Does that picture present all that our universe has ultimately
in store for it?

But after I had been depressing myself with such thoughts, one day
in the summer of 2005, another thought then occurred to me, which was
to ask: who will be around then to be bored by this apparent overpow-
ering eventual tedium? Surely not us; it will be mainly massless parti-
cles like photons and gravitons. And it is pretty hard to bore a photon
or a graviton—even aside from the extreme unlikelihood that such enti-
ties could actually have significant experiences! The point is that,
according to a massless particle, the passage of time is as nothing. Such
a particle can even reach eternity (that is, .7*) before encountering the
first ‘tick’ of its internal clock, as was illustrated in Fig.2.22. One might
well say that ‘eternity is no big deal’ for a massless particle such as a
photon or a graviton!

To put this another way, it would appear that rest-mass is a neces-
sary ingredient for the building of a clock, so if eventually there is little
around which has any rest-mass, the capacity for making measurements
of the passage of time would be lost (as is the capacity for making
distance measurements, since distances also depend on time measure-
ments; see §2.3). Indeed, as we have seen before, massless particles do
not appear to be particularly concerned with the metric nature of space-
time, respecting merely its conformal (or null-cone) structure.
Accordingly, to massless particles, the ultimate hypersurface . 7* repre-
sents a region of their conformal space-time that seems to be just
like anywhere else, and there appears to be no bar to their entering a
hypothetical extension of this conformal space-time on the ‘other side’
of .7*. Moreover, there are powerful mathematical results, mainly through
the important work of Helmut Friedrich,?*! that lend support to the
actual conformal future-extendability of space-time, under the general
circumstances being considered here, for which there must be a posi-
tive cosmological constant A.

This mirrors our discussion of the physics at a Big-Bang hypersur-
face which accords with Tod’s proposal. It appears that (for different
reasons) both .7* and 73~ would be likely to allow smooth extensions
of the conformal space-time to regions on the other sides of these hyper-
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surfaces. Not only that, but the material contents on either side would
be likely to be an essentially massless substance whose physical behav-
iour is basically governed by conformally invariant equations, and this
would enable the activity of this material to be continued into both of
these hypothetical extensions of (conformal) space-time.

One possibility might indeed suggest itself at this point. Could it be
that our .7* and @3~ are one and the same? Perhaps, as a conformal
manifold, our universe just ‘loops round’, so that what lies beyond
7" is simply our own universe starting up again from its Big-Bang
origin, conformally stretched out as 24 -, according to Tod’s proposal.
The economy of this idea certainly has its appeal, but I think that there
could be serious difficulties of consistency which, in my own view,
render this suggestion implausible. Basically, such a space-time would
contain closed timelike curves whereby causal influences can lead to
potential paradoxes, or at least to unpleasant constraints on behaviour.
Such paradoxes or constraints do depend upon the possibility of coherent
information being able to pass across the .7*/23~ hypersurface. Yet we
shall be seeing in §3.6 that this kind of thing is a real possibility in
the type of scheme that I am proposing here, and so such closed time-
like curves do indeed have the potential to lead to serious inconsis-
tency problems.!'% For reasons such as this I am not proposing this
J* 28~ identification.

However, I am suggesting ‘the next best thing’, which is to propose
that there is a physically real region of space-time prior to ©3~ which is
the remote future of some previous universe phase, and that there is also
a physically real universe phase that extends beyond our .7* to become
a big bang for a new universe phase. In accordance with this proposal,
I shall refer to the phase beginning with our 23~ and extending to our
7" as the present aeon, and I am suggesting that the universe as a whole
is to be seen as an extended conformal manifold consisting of a (possibly
infinite) succession of aeons, each appearing to be an entire expanding
universe history. See Fig. 3.3. The ‘.7*" of each is to be identified with
the ‘23~ of the next, where the continuation of each aeon to the next is
achieved so that, as a conformal space-time structure, the join is perfectly
smooth.
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Fig.3.3 Conformal cyclic cosmology. (As with my drawing in Fig 2.5, I am trying
not to prejudice the issue of whether the universe is spatially open or closed.)

The reader might well worry about identifying a remote future, where
the radiation cools down to zero temperature and expands out to zero
density, with a big-bang-type of explosion, where the radiation had
started at an infinite temperature and infinite density. But the conformal
‘stretching’ at the big bang brings this infinite density and temperature
down to finite values, and the conformal ‘squashing’ at infinity brings
the zero density and temperature up, to finite values. These are just the
kinds of rescalings that make it possible for the two to match, and the
stretching and squashing are procedures that the relevant physics on
either side is completely insensitive to. It may also be mentioned that
the phase space P, describing the totality of possible states of all the
physical activity on either side of the crossover (see §1.3), has a volume
measure which is conformally invariant,®!! basically for the reason that
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when distance measures are reduced, the corresponding momentum
measures are increased (and vice versa) in just such a way that the
product of the two is completely unchanged by the rescaling (a fact that
will have crucial significance for us in §3.4). I refer to this cosmolog-
ical scheme as conformal cyclic cosmology, abbreviated CCC.12
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There are various aspects of this proposal that require a good deal more
detailed attention than I have given above. One key issue concerns what
the full contents of the universe might be likely to be in the very remote
future. The discussion above concentrated mainly on the considerable back-
ground of photons that would be present, from starlight, from the CMB,
and from black-hole Hawking evaporation. I have also considered that there
would be a significant contribution to this background from gravitons, by
which I mean the basic (quantum) constituents of gravitational waves, these
waves being ‘ripples’ of space-time curvature, arising largely from close
encounters between extremely large black holes in galactic centres.

Photons and gravitons are both massless, so it seems not unreason-
able to adopt a philosophy, relevant to the very remote future, that since,
in a very late stage in the universe’s history it would in principle be
impossible to build a clock out of such material, then the universe itself,
in the remote future, would somehow ‘lose track of the scale of time’
and so the geometry of the physical universe really becomes conformal
geometry (i.e. null-cone geometry), rather than the full metric geometry
of Einstein’s general relativity. In fact, we shall be seeing shortly that
there are subtleties in connection with the gravitational field which compel
us to moderate this philosophy somewhat. But for the moment, let us
confront another difficulty with this philosophical standpoint which needs
to be faced.
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When considering what the main contents of the universe might be
in the late stages of its existence, I have ignored the fact that there would
be much material within bodies that do not ever find themselves within
a black hole, having been flung out from their parent galaxies through
random processes, where in some cases the body would also escape from
the galactic cluster within which it had originally resided and where
there would, indeed, also be much dark matter that would never fall into
a black hole. What, for example, would be the fate of a white dwarf star
that had escaped in this way, cooled down to become an invisible black
dwarf? It has often been suggested that protons might eventually decay
away, though observational limits tell us that the rate at which this could
happen would have to be very slow indeed.™!* In any case, there would
be decay products of some kind, and although much of the material of
the black dwarf might eventually collapse into a black hole via such
processes, there would be likely to be many ‘rogue’ massive particles
that had, in some form, escaped from the clusters of galaxies to which
they had originally been attached.

My concern is particularly with electrons—and also with their anti-
particles, the positrons—because they are the least massive electrically
charged particles. It is not a particularly unconventional view that protons,
and other charged particles more massive than electrons and positrons,
might eventually, after vast periods of time, decay into less massive par-
ticles. We might imagine that all protons could ultimately decay in this
way, but if we accept the conventional view that electric charge must be
absolutely conserved, then the ultimate decay products of a proton must
contain a net positive charge, so that at least one positron would be
expected to be among the eventual survivors. A similar argument would
apply to negatively charged particles, and it is hard to escape the conclu-
sion that there would have to be numerous electrons present as well, to
accompany these positrons. There might also be more massive charged
particles such as protons and anti-protons, if these do not eventually
decay, but the key problem lies with the electrons and positrons.

Why is this a problem? Could there not be another type of charged
particle (one both of a positive and of a negative charge) which is actu-
ally massless, so that electrons and positrons could eventually decay
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into these, and the above philosophical standpoint be retained? The
answer appears to be ‘no’. For the mere existence of such a type of
massless charged particle, among the menagerie of particle types taking
part in today’s physical activities, would have made its presence copi-
ously manifest in numerous particle processes.>!*! Yet, these processes
are actually seen to take place without the production of such massless
charged particles. Consequently, there are no massless charged particles
around today. Will the (massive) electrons and positrons then have to
be around until eternity, in contradiction with the intended philosoph-
ical standpoint?

One possibility for retaining this standpoint is raised by the thought
that the remaining electrons and positrons might seek each other out
and eventually mutually annihilate one another completely to produce
merely photons, which would then be harmless to this philosophy.
But, unfortunately, in the extremely remote future, many individual
charged particles will find themselves isolated within their cosmo-
logical event horizons, as shown in Fig. 3.4 (see also Fig. 2.43 in
§2.5), and when that happens—as it sometimes must—it removes any
possibility of such an eventual charge annihilation. A possible reso-
lution would be to weaken our philosophical standpoint somewhat,
and to argue that the odd electron or positron, trapped within its event
horizon, would hardly be of much use for the construction of an actual
clock. For my own part, I am dissatisfied with such a line of reasoning,
as it seems to me to lack the kind of rigour that physical laws ought
to demand.

ositron !
P electron positron

electron’s event horizon

Fig.3.4 There will be the occasional ‘rogue’ electron or positron, ultimately trapped
within its horizon and unable to lose its electric charge through pair annihilation.
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A more radical resolution might be to suppose that charge conserva-
tion is actually not one of Nature’s stringent requirements. Accordingly,
it might be the case that, at extremely occasional moments, a charged
particle might decay into one that is without electric charge, and over
the reaches of eternity, all electric charge could, accordingly, eventually
vanish away. On this consideration, electrons or positrons might even-
tually become converted into one of their uncharged siblings, say a
neutrino, in which case it would also be a requirement that, among the
three known types of neutrino, there is one without rest-mass.!3! Quite
apart from there being no evidence whatever for any violation of charge
conservation, such a possibility is an extremely unpleasant one, theo-
retically, and it would also seem to demand that the photon itself acquire
a small mass, which would in itself nullify the proposed philosophical
standpoint.

The one remaining possibility that occurs to me, and which actually
strikes me as something to be considered seriously, not merely the least
of all evils, is that the notion of rest-mass is not the absolute constant that
we imagine it to be. The idea is that over the reaches of eternity, the
surviving massive particles—the electrons, positrons, neutrinos, and also
protons and antiprotons, if they do not eventually decay, and moreover
whatever might be the constituent of the dark matter (necessarily without
charge, but possessing rest-mass)—would find that their very rest-masses
would very, very gradually fade away, attaining the value zero in the even-
tual limit. Again, there is absolutely no observational evidence, as of now,
for such a violation of ordinary notions concerning rest-mass, but in this
case the theoretical backing of the conventional ideas is far less substan-
tial than for charge conservation. In the case of electric charge, we have
an additive quantity, in the sense that the total charge of a system is always
the sum of all its individual constituents, but with rest-mass, this is certainly
not the case. (Einstein’s E=mc? tells us that the kinetic energy of the
motions of the constituents will contribute to the total.) Moreover, although
the actual value of the basic electric charge (say that of the anti-down-
quark, which is one third of that of the proton) remains a theoretical
mystery, the values of all other charges found in the universe are whole-
number multiples of this value. Nothing like this appears to be the case
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for rest-mass, and the underlying reason for the particular values of the
rest-masses of individual particle types is completely unknown. So there
appears to be still the freedom that the rest-mass of a fundamental particle
is not an absolute constant—as indeed it is not, according to standard
particle physics, in the very early universe, as remarked above, in §3.1—
and that it might indeed fade away to zero in the very remote future.

In relation to this, one final technical comment may be made concerning
the status of rest-mass in particle physics. A standard procedure for
addressing the idea of an ‘elementary particle’ is to look for what are
termed the ‘irreducible representations of the Poincaré group’. Any
elementary particle is supposed to be described according to such an
irreducible representation. The Poincaré group is the mathematical struc-
ture describing the symmetries of Minkowski space M, and this proced-
ure is a natural one in the context of special relativity and quantum
mechanics. The Poincaré group possesses two quantities referred to as
Casimir operators,*'®! these being rest-mass and intrinsic spin, and
accordingly the rest-mass and spin are deemed to be ‘good quantum
numbers’, which remain constant so long as the particle is a stable one
and does not interact with anything. However, this role of M appears to
be less fundamental when there is a positive cosmological constant A
present in physical laws (as A=0 for M), and it would seem that, when
we are concerned with matters related to cosmology, it should be the
symmetry group of de Sitter space-time D, rather than of M, that should
ultimately be our concern (see §2.5, Fig. 2.36(a),(b)). However, it turns
out that rest-mass is not exactly a Casimir operator of the de Sitter group
(there being a small additional term involving A), so that its ultimate
status is more questionable in this case, and a very slow decay of rest-
mass seems to me to be not out of the question.!”

The extremely gradual decaying away of rest-mass, according to this
proposal, does have its curious implications, however, with regard to the
whole scheme of CCC, because it raises a new issue in relation to the
measurement of time. We recall that near the end of §2.3 a particle’s rest-
mass was used to provide a well-defined scale of time, such a scaling
being all that is needed so that we may pass from a conformal structure
to a full metric. If, as seems to be required from the above discussion, we

154



Conformal cyclic cosmology 3.2

need particles’ masses to decay away, albeit extremely gradually, then we
are led into a bit of a quandary. Do we still adopt this idea of using par-
ticles’ rest-masses for precisely defining our space-time’s metric, when
massive particles are still around, but with slowly decaying masses? If we
try to settle on some particular particle type, say an electron, as providing
us with the standard of time, then with the kind of decay rates that would
seem to be required in order for electrons to be considered adequately
‘massless’ when . 7% is reached (see Appendix A2), it would turn out that
7% is not at infinity at all, and the universe’s expansion, according to this
‘electron metric’ would either have to slow to a halt or else to reverse into
a collapse. It would appear that such behaviour would not be consistent
with Einstein’s equations. Moreover, if instead of an ‘electron metric’ we
used a ‘neutrino metric’ or ‘proton metric’, say, then the detailed geomet-
rical behaviour of the space-time would be likely to differ from the corres-
ponding behaviour that would be obtained by use of electrons (unless the
scaling to zero occurs with all mass values retaining exactly their initial
proportions). To me, this does not appear very satisfactory.

It seems that in order to preserve some appropriate form of Einstein’s
equations—with constant A—throughout the entire history of the aeon,
we need to use another proposal for scaling for the metric. What we can
do, although this would hardly be a ‘practical’ solution for the purposes
of building a clock, would be to use A itself to determine a scale, or, what
appears to be closely related to this, we might use the effective value of
the gravitational constant G. Then the picture of an evolving and unend-
ingly exponentially expanding universe continuing into its remote future
would be retained, but without seriously disturbing the philosophy that,
locally, the universe will eventually lose track of the scale of time.

This matter is closely related to another one which I have glossed
over until now, namely the fact that whereas there is a conformal invari-
ance for the free gravitational field, as described by the Weyl conformal
tensor C (since C indeed describes the conformal curvature), the coupling
of the field to its sources is not conformally invariant. This is quite
different from what happens in Maxwell’s theory, where there is a
conformal invariance which holds both for the free electromagnetic field
F and for the coupling between F and its sources as described by the
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charge-current vector J. Thus, again, when we bring gravity into the
picture in a serious way, the basic philosophy of CCC gets a little
muddied. We must take the view that, in a sense, the philosophy of CCC
asserts that it is gravity-free physics (and A-free physics) that loses track
of time, not completely physics as a whole.

Let us try to understand the relation of Einstein’s theory to conformal
invariance. It is a somewhat delicate matter. In the case of electromag-
netism, the entire equations are preserved under the conformal rescaling.
We are to examine what happens when the space-time metric g is replaced
by a conformally related one g by means of a scale factor Q, this being
a positive number varying smoothly over space-time (see §2.3, §3.1):

grg=0%g

To see the conformal invariance of Maxwell theory, we adopt rescalings
for the [5]-tensor F describing the field, and for the [j]-tensor J describing
the (charge-current) source, given by

Fe F=Fand J» j=0*].
Maxwell’s equations can be written symbolically as
VF=4r ],

where V stands for a specific set of differential operators™!®! determined
by the metric g. When the scale change g—g is applied, V must be
replaced by an operator quantity V, determined correspondingly by &,
and then what we find (Appendix A6) is

Vi =4nj

which, being just the same equation as before but now in ‘hatted’ form,
expresses the conformal invariance of Maxwell’s equations. In particu-
lar, when J=0 all we have are the free Maxwell equations:

VF=0,
and when g—g is applied, we find conformal invariance in

Vit=o0.
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This (conformally invariant) set of equations governs the propagation of
electromagnetic waves (light) and it can also be regarded as the quantum-
mechanical Schrodinger equation satisfied by individual free photons
(see §3.4 and Appendix A2, A6).

In the case of gravity, the source [5]-tensor E (Einstein tensor, taking
the place of J; see §2.6) does not have a scaling behaviour which provides
conformal invariance for the equations, but there is a conformally invariant
analogue of VF=0, which governs the propagation of gravitational waves,
and provides an analogous Schrédinger equation for individual free gravi-
tons. I shall write this symbolically (see Appendix A2, AS, A9) as

VK =0,

the subtlety here being that whereas this [9]-tensor K is taken to be iden-
tical to the Weyl conformal [j]-tensor C (of §2.6)

K=C

when the original (Einstein) physical metric g is used, we find (Appendix
A9) that when we rescale to a new metric § according to g—g=0Q02%g, we
must adopt different scalings

Cr»C=02C and K » K= QK,

in order to preserve the meaning of C as providing the measure of
conformal curvature, and to preserve the conformal invariance of the
wave propagation of K, so that we get

VK=o,
then these scalings lead us tot*!”!
K=0'C

This has some curious consequences, which are of considerable import-
ance for CCC. As we approach .7* from its past, we need to use a
conformal factor 0 which tends to zero smoothly,*?” but with a non-
zero normal derivative. The geometrical meaning of this is illustrated in
Fig. 3.5. The conformal invariance of the wave-propagation equation for
K implies that it attains finite (and usually non-zero) values on . 7%, these
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values determining the strength (and polarization) of the gravitational
radiation—the gravitational analogue of light—as it continues out to
infinity and thereby makes its mark on . 7*. See Fig. 3.6. The same applies
to the values of F on .7*, determining the strength and polarization of
the electromagnetic radiation field (light). But because of the fact that Q
becomes zero at .7*, the displayed equation above, rewritten as C=0K
tells us that the finiteness of Kimplies that the conformal tensor € must
itself become zero on .7* (where we use a metric g finite at . 7*). Since
C provides a direct measure of conformal geometry at .7*, the demand
of CCC that the conformal geometry be smooth over the crossover 3-
surface from each aeon to the next tells us that conformal curvature must
also be zero at the big-bang surface @3~ of the subsequent aeon.
Accordingly, CCC actually provides a stronger version of Weyl curva-
ture hypothesis (WCH, see §2.6) than the condition that the conformal
curvature merely be finite (which was what Tod’s proposal gave directly),
namely that this conformal curvature really does vanish at the 23~ of
each aeon, in accordance with the original idea of WCH.

A ‘conformal time’

Crossover

\ >
conformal factor
(called Q in §3.2, but called Q'=-—w in Appendix B)

Fig. 3.5 The conformal scale factor goes cleanly from positive to negative at
crossover, the curve having a slope that is neither horizontal nor vertical. Here
‘conformal time’ just refers to ‘height’ in a suitable conformal diagram.
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Crossover % finite
~ C=0

W
§§ PK propagates up

to and across .7*
é finite source,
\
N ‘

S
L

gravitationally radiating

Fig.3.6 The gravitational field is measured by the tensor K, propagates according
to a conformally invariant equation, and so generally attains finite non-zero values
at s+

On the other side of the crossover surface, i.e. just following the
24" of the subsequent aecon, we find a conformal factor which becomes
infinite at @3-, but in just such a way as to make Q! behave smoothly
at 23321 Thus, it appears to be the case that Q has to be able to be
continued somehow over the crossover 3-surface to become, suddenly,
its reciprocal! A way to handle this situation mathematically is to encode
the essential information of Q in a way that does not distinguish it from
its reciprocal Q'. This can be done by considering the [{]-tensor IT (a
1-form), that mathematicians would write ast3%?

The two most important things about IT are, first, that it remains smooth
over the crossover 3-surface and, second, that it is unchanged under the
replacement Q—-Q".

In CCC, we try to demand that II indeed be a smoothly varying
quantity over the crossover, so that if we take Il to define the required
scaling information, rather than (), then we can imagine that the transi-
tion Q—Q! at crossover can be achieved while II remains smooth across
it. This requires certain mathematical conditions to be satisfied for the
behaviour of Q at .7%, and the indications are that these can indeed be

159



3.2 Cycles of Time

achieved satisfactorily and uniquely. (Detailed arguments are given in
Appendix B.) The upshot of it all is that there turns out to be a clear-
cut and apparently unique mathematical procedure for continuing the
massless fields into the future through the crossover 3-surface, it being
assumed that only massless fields are present in the very remote future
of the earlier aecon (i.e. just prior to .7%).

With only massless fields present, we have a particular scaling freedom
in the choice of rescaled metric g in the region just prior to the .7* of
the earlier aeon, consistent with its given conformal structure. This
freedom is described in terms of a field @, which satisfies a self-coupled
(i.e. non-linear) conformally invariant massless scalar field equation that
I refer to (in Appendix B2) as the ‘Go-equation’. The different solutions
of the w-equation give us the different possible metric scalings that
would get us from our chosen g-metric to the other possible metrics W28
which Einstein’s equations (with cosmological constant A) would tell us
refer only to sources which are massless. The particular choice of @
that gives us Einstein’s original physical metric g, is referred to as the
‘phantom field’ (since in Einstein’s g-metric it disappears, simply taking
the value 1). The phantom field does not have any independent physical
degrees of freedom, in the region prior to the .7*, but just keeps track
of the metric g, telling us the scaling that gets us back to g from the 8-
metric that is currently being used.

On the opposite side of the crossover, immediately following the big
bang of the subsequent aeon, we find that simply continuing the fields
smoothly through leads to an effective gravitational constant in this new
aeon that has become negative, with unphysical implications.
Consequently it becomes necessary to adopt the alternative interpret-
ation, in which we use the alternative choice Q-!, consistent with II, on
the other side. This has the effect of turning the phantom field @ into
a real physical field (albeit initially infinite) on the big-bang side of
crossover. It is tempting to interpret this @-field following this big bang
as providing the initial form of new dark matter, prior to it acquiring a
mass. Why make such an interpretation? The reason simply is that the
mathematics forces there to be some dominant new contribution, of the
nature of a scalar field, in the big bang of the new aeon, this arising

160



Conformal cyclic cosmology 3.2

from the above behaviour of the conformal factor. This is additional to
the contributions from photons (electromagnetic field) or from any other
particles of matter (considered to have lost their rest-mass by the time
that they reach the crossover 3-surface). It has to be there for mathe-
matical consistency, as soon as we adopt the QQ—-!, transformation at
CrOSSOVer.

An additional feature that we find coming out of the mathematics is
that on the big-bang side of crossover, the condition that all sources are
massless cannot be strictly maintained, although a natural constraint
restricting unwanted freedom in the conformal factor is that this appear-
ance of rest-mass is put off for as long as possible. Thus, a component
to the post-big-bang matter content is this contribution bearing rest-mass.
It would be natural to assume that this has something to do with the
Higgs field (or whatever might turn out to be necessary) in its role in
the appearance of rest-mass in the early universe.

Dark matter is the dominant form of matter, apparently observed to
be present in the initial stages of our own aeon. It comprises some 70%
of ordinary matter (where ‘ordinary’ just means not counting the contri-
bution of the cosmological constant A—commonly referred to as ‘dark
energy’3¥), but dark matter does not seem to fit at all comfortably into
the standard model of particle physics, its interaction with other kinds
of matter being solely through its gravitational effect. The phantom field
W in the late stages of the prior aeon arises as an effective scalar compon-
ent to the gravitational field, coming about only because we are allowing
the conformal rescalings g—Q?g, and it has no independent degrees of
freedom. In the subsequent aeon, the new W-matter that comes about
initially takes over the degrees of freedom present in the gravitational
waves in the prior acon. Dark matter seems to have had a special status
at the time of our Big Bang, and this is certainly the case for @. The
idea is that shortly after the Big Bang (presumably when the Higgs comes
into play), this new @-field acquires a mass, and it then becomes the
actual dark matter that appears to play such an important role in shaping
the subsequent matter distributions, with various kinds of irregularities
that are observed today.

It is perhaps significant that the two so-called ‘dark’ quantities (‘dark
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matter’ and ‘dark energy’), that have gradually become apparent from
detailed cosmological observations in recent decades, both appear to be
necessary ingredients of CCC. This scheme would certainly not work
without A>0, since the consequent spacelike nature of . 7* is needed in
order to match the spacelike character of ©4~. Moreover, we see from the
above that the scheme requires that there be some sort of initial matter
distribution which might reasonably be identified with the dark matter. It
will be interesting to see whether this interpretation of dark matter will
hold up theoretically and observationally.

With regard to A, the main thing that appears to puzzle cosmologists
and quantum field theorists is its value. The quantity Ag is often inter-
preted by quantum field theorists as the energy of the vacuum (see §3.5).
For reasons to do with relativity, it is argued that this ‘vacuum energy’
ought to be a [J]-tensor proportional to g, but the proportionality factor
comes out as something larger than the observed value of A by a factor
of around 10'%, so something is clearly missing from this idea!?* Another
thing that is found puzzling is that A’s observed tiny value is just such
as to be starting to have effects on the expansion of the universe that are
comparable with the particular totality of attraction due to matter in the
universe now, which was enormously greater in the past and which will
become enormously smaller in the future, and this seems to be an odd
coincidence.

To me this ‘coincidence’ is not such an enormous puzzle, at least over
and above some puzzles that had already been with us long before the
observational evidence indicating A’s actual small value. Certainly the
observed value of A needs explanation, but perhaps it can be specifically
related to the gravitational constant G, the speed of light ¢ and Planck’s
constant 4 by some fairly simple formula, but with the 6th power of a
certain large number N in the denominator

3
A
N°Gh
Here

162



Conformal cyclic cosmology 3.2

is Dirac’s form of Planck’s constant h (sometimes called the reduced
Planck constant). The number N is about 10? and it was pointed out, in
1937, by the great quantum physicist Paul Dirac that various integer
powers of this number seem to turn up (approximately) in several different
ratios of basic physical dimensionless constants, particularly when gravity
is in some way involved. (For example, the ratio of the electric to the
gravitational force between the electron and the proton in a hydrogen
atom is around 10*~N2) Dirac also pointed out that the age of the
universe is about N?, in terms of the absolute unit of time that is referred
to as the Planck time te. The Planck time, and the corresponding Planck
length lp=ctp, are often regarded as providing a kind of ‘minimum’ space-
time measure (or ‘quantum’ of time and space, respectively), according
to common ideas about quantum gravity:

tr= /Cé—?zSAXIO““‘s, lP=\/CZ‘_§iz1.6X10_35m.

By use of these ‘Planck units’, and also the Planck mass mp and Planck
energy Ep given by

5
mp= ’%Cz2.1x10’5g, Ep= /%z 2.0x10°7,

which are naturally determined (though completely impractical) units,
one can express many other basic constants of Nature simply as pure
(dimensionless) numbers. In particular, in these units, we have A=N°,

In addition, we can use Planck units for temperature, by setting
Boltzmann’s constant k=1, where one unit of temperature is the absurdly
large 2.5x 10°2K. When considering the very large entropies involved
with large black holes or with regard to the universe as a whole (as in
§3.4), I shall use Planck units. However, for values this large, it turns
out to make little difference what units are used.

Originally, Dirac thought that since the age of the universe is (obvi-
ously) increasing with time, then N ought to be increasing with time or,
equivalently, G reducing with time (in proportion to the reciprocal of the
square of the universe’s age). However, more accurate measurements of
G than were available when Dirac put his ideas forward have shown that
G (or equivalently N), if it is not constant, cannot vary at the rate that
Dirac’s ideas required.'*?! However, in 1961, Robert Dicke (with a refined
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later argument by Brandon Carter®?!) pointed out that according to the
accepted theory of stellar evolution, the lifetime of an ordinary ‘main-
sequence’ star is related to the various constants of Nature in such a way
that any creature whose life and evolution depends upon its being around
somewhere roughly in the middle of the time-span of such an ordinary
star’s active existence, would be likely to find a universe whose age, in
Planck time units, is indeed around N°. So long as the particular N
value of A can be theoretically understood, this would also explain the
puzzle of the apparent coincidence of a cosmological constant coming
into play just around now. Yet, these are clearly speculative matters, and
admittedly some better theories will be required to provide understanding
of these numbers.
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The scheme of CCC may be contrasted with a number of other proposals
for pre-Big-Bang activity, which had been put forward previously. Even
among the earliest cosmological models consistent with Einstein’s general
relativity, namely those of Friedmann put forward in 1922, there was
one that became referred to as the ‘oscillating universe’. This termi-
nology seems to have arisen from the fact that for the closed Friedmann
model without cosmological constant (K>0, A=0; see Fig. 2.2(a)), the
radius of the 3-sphere that describes the spatial universe, when repre-
sented as a function of time, has a graph that has the shape of a cycloid,
which is the curve traced out by a point on the circumference of a circular
hoop rolling along the time axis (normalized so that the speed of light
c=1 (see Fig. 3.7). Clearly this curve extends beyond the single arch
that would describe a spatially closed universe expanding from its big
bang and then collapsing back to its big crunch, where now we have a
succession of such things, and we can think of the entire model as repre-
senting an unending succession of ‘aeons’ (Fig. 3.8), a scheme which
briefly interested Einstein in 1930.5*” Of course the ‘bounce’ that takes
place at each stage at which the spatial radius reaches zero occurs at a
space-time singularity (where the space-time curvature becomes infinite)
and Einstein’s equations cannot be used in the ordinary way to describe
a sensible evolution, even though some sort of modification might be
envisaged, perhaps along lines something like those of §3.2.
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Fig. 3.7 The Friedmann model of Fig.
time 2.2(a) has a radius which, when plotted
as a function of time, describes a
cycloid, which is the curve traced out by
a point on a rolling hoop.

Fig. 3.8 Taking the cycloid of Fig 3.7
seriously, we obtain an oscillating closed
universe model.

time

A more serious matter, however, from the point of view of this book,
is how such a model can address the issue of the Second Law, since this
particular model leaves no scope for a progressive change representing
a continual increase of entropy. In fact, in 1934, the distinguished
American physicist Richard Chace Tolman described a modification of
Friedmann’s oscillating model®?® which alters Friedmann’s ‘dust’ to a
composite gravitating material with an additional internal degree of
freedom, which can undergo changes to accommodate an increase in
entropy. Tolman’s model somewhat resembles the oscillating Friedmann
model, but the successive aecons have progressively longer durations and
increasingly greater maximum radii (see Fig. 3.9). This model is still of
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the FLRW type (see §2.1), so there is no scope for contributions to the
entropy through gravitational clumping. Consequently, the entropy
increase in this model is of a comparatively very mild kind. Nevertheless,
Tolman’s contribution was important in being one of the surprisingly
few serious attempts to accommodate the Second Law into cosmology.

Fig. 3.9 This model, due to Tolman,
began to address the Second Law by
having a matter content allowing an
increasing entropy, whence the model
would become larger at each stage.

time

At this point, it is appropriate to mention another of Tolman’s contri-
butions to cosmology, which has some considerable relevance also to
CCC. The representation of the material contents of the universe as a
pressureless fluid (i.e. ‘dust’; see §3.1) is the way that the gravitational
source (i.e. the Einstein tensor E; see §2.6) is dealt with in the Friedmann
models. This is not such a bad first approximation, so long as the actual
material being modelled is reasonably dispersed and cold. But, when we
are considering the situation in the close vicinity of the Big Bang, we
need to treat the material contents as being very hot (see beginning of
§3.1), so it is expected that a much better approximation near the Big
Bang is incoherent radiation—although for the evolution of the universe
following the time of decoupling (§2.2), Friedmann’s dust is better.
Accordingly, Tolman introduced radiation-filled analogues of all six of
the Friedmann models of §2.1 in order to provide a better description of
the universe close to the Big Bang. The general appearance of the Tolman
radiation solutions does not differ greatly from that of the corresponding
Friedmann solutions, and the pictures of Figs. 2.2 and 2.5 will do well
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enough also for the Tolman radiation solutions. The strict conformal
diagrams of Fig. 2.34 and Fig. 2.35 will also do for the respective Tolman
radiation solutions, except that the picture Fig. 2.34(a) needs to be replaced,
strictly speaking, by one where the depicted rectangle is replaced by a
square. (In the drawing of strict conformal diagrams, there is frequently
enough freedom to accommodate such differences in scale, but in this
case, the situation turns out to have a little too much rigidity to remove
the global scale difference between these two figures.)

The cycloidal arch of Friedmann’s Fig. 3.7, for the case K>0, must,
in Tolman’s radiation model, be replaced by the semicircle of Fig. 3.10,
describing the universe’s radius as a function of time (K>0). It is curious
that the natural (analytic) continuation of Tolman’s semicircle behaves
quite differently from what happens with the cycloid, since a semicircle
ought really to be completed to a circle if we are thinking of a genuine
analytic continuation.*' This makes no sense if we are trying to think
of an actual continuation to values of the time-parameter which extend
beyond the range of the original model. Basically, the universe radius
would have to become imaginary®>*° in Tolman’s case, if we were to try
to extend it analytically to a phase prior to this model’s big bang. Thus
a direct analytical continuation to provide a ‘bounce’ of the type that
occurs with the ‘oscillating’ Friedmann K>0 solution does not seem to
make sense when we move from Friedmanns’s dust to Tolman’s radi-
ation, the latter being much more realistic for behaviour near the actual
Big Bang, owing to the extraordinarily high temperature that we expect
to find there.

Fig. 3.10 In Tolman’s closed radiation-
filled universe, the radial function is a
Ve semicircle.

\ radius of

-
>

universe
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This difference in behaviour at the singularity has importance in rela-
tion to Tod’s proposal (§2.6). This has to do with the nature of the
conformal factor () that is needed to ‘blow up’ the big bangs of the
Friedman solutions and corresponding Tolman radiation solutions to a
smooth 3-surface #4. Since such an () becomes infinite at 23, it will be
clearer if we phrase things in terms of the reciprocal of this Q, for which
I shall use the small letter w:

w=0"

(The reader may be reassured, here, that despite the confusion between
the notation used here and in Appendix B concerning the definition(s) of
Q, the w used here actually agrees with that of Appendix B.) In the
Friedmann cases, we find that close to the 3-surface 3, the quantity w
behaves like the square of a local (conformal) time parameter (vanishing
at 74, so the continuation of w across 4" is achieved smoothly without
w changing sign. Hence its inverse () does not become negative across
24 either; see Fig. 3.11(a). On the other hand, in the Tolman radiation
cases, w varies in proportion to such a local time parameter (vanishing
at 28, so smoothness in w would require the sign of w, and therefore
of ) itself, to change to a negative value on one or the other side of 74.
In fact, this latter behaviour is much closer to what happens in CCC. We
saw, in §3.2, that a smooth conformal continuation of the remote expanded

A
‘conformal
time’

/\/Friedmann case (a)

+— Tolman case (b)

crossover 5V
; N

conformal factor w

Fig. 3.11 Comparison between the behaviours of the conformal factors w for (a)
Friedmann’s dust and (b) Tolman’s radiation. Only the latter (b) is consistent with
CCC. (See Fig. 3.5 and Appendix B for the terminology and notation.)
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future of the aeon previous to the crossover 3-surface continues across
having a negative ()-value in the subsequent aeon (Fig. 3.11(b)). This
gives us a catastrophic reversal of the sign of the gravitational constant,
if we do not make the switch Q—Q" at the crossover surface (see §3.2).
But if we do make this switch, then the behaviour of (—){ on the big-
bang side of crossover is necessarily the kind of behaviour that we get
for a Tolman radiation solution, rather than a Friedmann one. This appears
to be very satisfactory, because a Tolman radiation model indeed provides
a good local approximation to the space-time immediately following the
Big Bang (where I am ignoring the possibility of inflation, for reasons
referred to in §2.6, §3.4 and §3.6).

There is a further idea that some cosmologists have proposed might
be incorporated into cyclic models such as the Friedmann oscillating
model of Fig. 3.8 or some modification of it like that due to Tolman
illustrated in Fig. 3.9. This idea appears to have been originated by John
A. Wheeler, when he put forward the intriguing proposal that the dimen-
sionless constants of Nature might become altered when the universe
passes through a singular state like the zero-radius moments that occur
in these oscillating type models. Of course, since the normal dynamical
laws of physics have had to be abandoned in order to get the universe
through these singular states, there seems no reason why we should not
abandon a few more and let the basic constants vary too!

But there is a serious point here. It has been frequently argued that
there are many curious coincidences in the relations between the constants
of Nature upon which life on Earth seems to depend. Some of these might
be readily dismissed as being of value only to certain kinds of life we
are familiar with, like the parameters determining the delicate fact that
as ice forms from water, it is anomalous in being less dense than the
water, so that life can persist in water remaining unfrozen under a protec-
tive surface layer of ice even when the external temperature drops below
freezing. Others seem to present a more problematic challenge, such as
the threat that the whole of chemistry would have been impossible had
not the neutron been just marginally more massive than the proton, a fact
which leads to a whole variety of different kinds of stable nuclei—these
underlying all the different chemical elements—that would not otherwise
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have come about. One of the most striking of such apparent coincidences
was revealed with William Fowler’s confirmation of Fred Hoyle’s remark-
able prediction of the existence of a particular energy level of carbon
which, had it not existed, would have meant that the production of heavy
elements in stars would not have been able to proceed beyond carbon,
leaving the planets devoid of nitrogen, oxygen, chlorine, sodium, sulphur,
and numerous other elements. (Fowler shared in the 1982 Nobel Prize
for this with Chandrasekhar but, strangely, Hoyle was passed over.)
The term ‘anthropic principle’ was coined by Brandon Carter, who
made a serious study of the notion®3! that had the constants been not
exactly right in this particular universe, or in this particular place or partic-
ular time in this particular universe, then we would have had to have
found ourselves in another, where these constants did have suitable values
for intelligent life to be possible. It is not my intention to pursue this
extremely intriguing but highly contentious set of ideas further here. I am
not altogether sure what my own position on the matter is, though I do
believe that too much reliance is frequently placed on this principle in
attempts to give support to what are, to me, implausible-sounding proposed
theories.?#? Here, I merely point out that in passing from one aeon to
the next in accordance with CCC, there might well be scope for changes
to, say, the value of the ‘N’ referred to in §3.2, whose powers seem to
determine the various ratios between widely differing fundamental dimen-
sionless physical constants. The matter will be addressed again in §3.6.
Wheeler’s idea is also incorporated into a more exotic proposal put
forward by Lee Smolin in his 1997 book Life of the Cosmos.***' Smolin
makes the tantalizing suggestion that when black holes form, their internal
collapsing regions—through unknown quantum-gravity effects—become
converted to expanding ones by some kind of ‘bounce’, each one providing
the seed of a new expanding universe phase. Each new ‘baby universe’
then expands to a ‘full-grown’ one with its own black holes, etc., etc.
See Fig. 3.12. This collapsewexpansion procedure would clearly have
to be quite unlike the kind of conformally smooth transition involved in
CCC (see Fig. 3.2), and its relation to the Second Law is obscure.
Nevertheless the model has the virtue that it can be studied from the
point of view of the biological principle of natural selection, and it is
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not entirely without significant statistical predictions. Smolin makes
worthy attempts at such predictions and provides comparisons with obser-
vational statistics of black holes and neutron stars. The role of Wheeler’s
idea here is that the dimensionless constants might change only moder-
ately in each collapsewexpansion process, so that there would be some
kind of ‘inheritance’ in the propensity to form new black holes, this being
subject to the influences of a kind of natural selection.

Fig.3.12 Smolin’s romantic view of the universe where new ‘aecons’ emerge from
black-hole singularities.

Hardly less fanciful, in my own humble view, are those cosmological
proposals which depend for their operation on the ideas of string theory
and their dependence—as string theory stands—on the existence of extra
space dimensions. The earliest such pre-big-bang proposal, as far as I am
aware, is one due to Gabriele Veneziano.?**! This model does seem to have
some strong points in common with CCC (pre-dating CCC by some seven
years), particularly in relation to the roles of conformal rescalings, and the
idea that the ‘inflationary period” might better be thought of as an expo-
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nential expansion occurring in a universe phase prior to the one we are
presently experiencing (see §3.4, §3.6). On the other hand, it is dependent
on ideas from string-theory culture, which makes it hard to relate directly
to the CCC proposal being put forward here, particularly in relation to the
clear-cut predictive elements of CCC that I shall come to in §3.6.

Similar remarks apply also to the more recent proposal of Paul
Steinhardt and Neil Turok,?3! in which the transition from one ‘acon’
to the next takes place via the ‘collision of D-branes’, D-branes being
structures within a higher-dimensional adjunct to the normal notion of
4-dimensional space-time. Here, the crossover is taken to occur only at
some smallish multiple of 10'? years, when all black holes that are
currently believed to come about through astrophysical processes would
still be around. Moreover, apart from this, the dependence on concepts
from the string-theory culture again make it difficult to make clear-cut
comparisons with CCC. This could be greatly clarified if their scheme
could be reformulated in such a way that it can be viewed as being based
on a more conventional 4-dimensional space-time, the roles of the extra-
dimensional structures being somehow codified into 4-dimensional
dynamics, even if only approximately.

In addition to the schemes referred to above, there are numerous
attempts to use ideas from quantum gravity to achieve a ‘bounce’ from
a previously collapsing universe phase to a subsequent expanding one.¢!
In these, it is taken that a non-singular quantum evolution replaces the
singular state that classically would occur at the moment of minimum
size. In many attempts to achieve this, simplified lower-dimensional
models are often used, although the implications for 4-dimensional space-
time are then not altogether clear. Moreover, in most attempts at a
quantum evolution, the singularities are still not removed. The most
successful proposal to date for a non-singular quantum bounce appears
to be that using the loop-variable approach to quantum gravity, and a
quantum evolution through what would classically be a cosmological
singularity has been achieved on these terms, by Ashtekar and
Bojowald.337

However, as far as I am able to tell, none of the pre-Big-Bang proposals
described in this section makes any serious inroad into the fundamental issue
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raised by the Second Law, as described in Part 1. None explicitly addresses
the question of suppressing gravitational degrees of freedom in the Big Bang,
this actually being the key to the origin of the Second Law in the particular
form that we find it, as was emphasized in §2.2, §2.4 and §2.6. Indeed, most
of the above proposals lie firmly within the scope of FLRW models, so they
do not come close to addressing these essential matters.

Yet, even the early twentieth-century cosmologists were certainly
aware that things might get very different as soon as deviations from
FLRW symmetry are allowed. Einstein himself had expressed the hope!*3#!
that the introduction of irregularities might enable the singularity to be
avoided (rather in the same spirit of the much later work of Lifshitz and
Khalatnikov, before they and Belinski located their error; see §2.4). As
has now become clear, following the singularity theorems of the later
1960s,1*3% this hope cannot be realized within the framework of clas-
sical general relativity, and models of this type will inevitably encounter
space-time singularities. We see, moreover, that when such irregularities
in the collapsing phase are present, and are growing relentlessly in accord-
ance with the vast entropy increases that accompany gravitational collapse
according to the picture presented in §2.6, then there is no possibility
that the geometry—even just the conformal (null-cone) geometry—that
the collapsing phase will attain at its big crunch can match the far smoother
(FLRW-like) big bang of the subsequent aeon.

Accordingly, if we are to take the view that the pre-Big-Bang phase
would indeed have to behave in accordance with the Second Law, with
gravitational degrees of freedom becoming fully activated, then it would
appear that something very different from a straightforward bounce, either
classical or quantum, must be involved. My own attempt to address this
serious question constitutes one of the principal reasons for putting forward
the apparently somewhat strange idea of CCC—involving, as it does, the
infinite scale change that permits the required geometrical matching
between one aeon and the next. Yet, a profound puzzle still remains: how
can such a cyclic process be nevertheless consistent with the Second Law,
with entropy continually increasing throughout aeon after aeon after acon
...7 This challenge is central to the entire undertaking of this book and
I shall need to confront it seriously in the next section.
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Let us therefore return to the question which started out this whole enter-
prise, namely the origin of the Second Law. The first point to be made
is that there is a conundrum to be faced. It is a conundrum that appears
to confront us irrespective of CCC. The issue has to do with the evident
fact that the entropy of our universe—or the current aeon, if we are
considering CCC—seems to be vastly increasing, despite the fact that
the very early universe and the very remote future appear to be uncom-
fortably similar to one another. Of course they are not really similar in
the sense of being nearly identical, but they are alarmingly ‘similar’
according to the usage of that word commonly applied in Euclidean
geometry, namely that the distinction between the two seems to be basi-
cally just an enormous scale change. Moreover, any overall change of
scale is essentially irrelevant to measures of entropy—where that quan-
tity is defined by Boltzmann’s marvellous formula (given in §1.3)—
because of the important fact, noted at the end of §3.1, that phase-space
volumes are unaltered by conformal scale changes.**"! Yet, the entropy
does seem to increase, vastly, in our universe, through the effects of
gravitational clumping. Our conundrum is to understand how these
apparent facts are to square with one another. Some physicists have
argued that the ultimate maximum entropy achieved by our universe will
arise not from clumping to black holes, but from the Berkenstein—-Hawking
entropy of the cosmological event horizon. This possibility will be
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addressed in §3.5, where I argue that it does not invalidate the discus-
sion of this section.

Let us examine more carefully the likely state of the early universe,
where some appropriate condition has been imposed to kill off gravita-
tional degrees of freedom at the Big Bang, so that gravitational entropy
is low in what we find in the early universe. Do we need to take into
account cosmic inflation? The reader will have realized that I am scep-
tical of the reality of this presumed process (§2.6), but no matter; in this
discussion it makes little difference. We can either ignore the possibility
of inflation, or perhaps take the view (see §3.6) that CCC provides merely
a different interpretation of inflation where the inflationary phase is the
exponentially expanding phase of the previous aeon, or else we can
simply consider the situation just following the cosmic ‘moment’ —at
around 107?>s—when inflation is considered just to have turned off.

As I have argued at the beginning of §3.1, it is reasonable to suppose
that this early-universe state (say at around 107*2s) would be dominated
by conformally invariant physics, and inhabited by effectively massless
ingredients. Whether or not Tod’s proposal, of §2.6, is correct in all
detail, it seems that we do not go too far wrong in taking the early-
universe state, in which gravitational degrees of freedom are indeed
hugely suppressed, to be one in which a conformal stretching out would
provide us with a smooth non-singular state still essentially inhabited by
massless entities, perhaps largely photons. We would need to consider
also the additional degrees of freedom in the dark matter, also taken to
be effectively massless in those early moments.

At the other end of the time scale, we have an ultimate exponentially
expanding de Sitter-like universe (§2.5), again largely inhabited by mass-
less ingredients (photons). There could well be other stray material
consisting, say, of stable massive particles, but the entropy would lie
almost entirely within the photons. It would appear that we still do not
go far wrong (appealing to the results of Friedrich cited in §3.1) if we
assume that we can conformally squash down the remote future to obtain
a smooth universe state not at all unlike that we obtained by conformally
stretching out the situation close to the Big Bang (say at 10732s). If
anything, there might well be more degrees of freedom activated in the
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stretched-out Big Bang, because in addition to the degrees of freedom
perhaps activated in dark matter, Tod’s proposal still allows for the pres-
ence of gravitational degrees of freedom in a non-zero (but finite) Weyl
tensor C, rather than the requirement C=0 demanded by CCC (see §2.6,
§3.2). But if such degrees of freedom are indeed present, this will only
make our conundrum more severe, the problem to be faced being that
the entropy of the very early universe is seen to be hardly smaller (if
not actually larger) than that to be found in the very remote future, despite
the fact that there must surely be absolutely enormous increases in entropy
taking place between 107?s and the very remote future.

In order to address this conundrum properly, we need to understand
the nature and magnitude of the major contributions to what we expect
to be an enormous increase of entropy. At the present time, it appears
that easily the major contribution to the entropy of the universe comes
from huge black holes at the centres of most (or all?) galaxies. It is
hard to find an accurate estimate of the sizes of black holes in galaxies
generally. By their very nature, black holes are hard to see! But our
own galaxy may well be fairly typical, and it appears to contain a black
hole of some 4% 10°Mo (see §2.4), which by the Bekenstein-Hawking
entropy formula provides us with an entropy per baryon for our galaxy
of some 10*' (where ‘baryon’, here means, in effect, a proton or neutron,
where for ease of description, I am taking baryon number to be
conserved—no violation of this conservation principle having been yet
observed). So let us take this figure as a plausible estimate for the current
entropy per baryon in the universe generally.**!! If we bear in mind that
the next largest contribution to the entropy appears to be the CMB,
where the entropy per baryon is not more than around 10°, we see how
stupendously the entropy appears to have increased already, since the
time of decoupling—Ilet alone since 10?s—and it is the entropy of
black holes that is basically responsible for this vast entropy increase.
To make this more dramatic, let me write this out in more everyday
notation. The entropy per baryon in the CMB is around 1000000 000,
whereas (according to the above estimate), the current entropy per baryon
is about
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1000000000000 000000000,

this being mainly in black holes. Moreover, we must expect these black
holes, and consequently the entropy in the universe, to grow very consid-
erably in the future, so that even this number will be utterly swamped
in the far future. Thus, our conundrum takes the form of the question:
how can this be squared with what has been said in the early parts of
this section? What will ultimately have happened to all this black-hole
entropy?

We must try to understand how the entropy will ultimately appear
to have shrunk by such an enormous factor. In order to see where all
that entropy has gone, let us recall what, indeed, is supposed to be the
fate, in the very remote future, of all those black holes responsible for
the vast entropy increase. According to what has been said in §2.5, after
around 10' years or so the holes will all have gone, having evaporated
away through the process of Hawking radiation, each presumed to disap-
pear finally with a ‘pop’.

We must bear in mind that the raising of entropy due to the swal-
lowing of material by a black hole, and also the hole’s eventual reduc-
tion in size (and mass) due to its Hawking evaporation, would be fully
consistent with the Second Law; not only that, but also these phenomena
are direct implications of the Second Law. To appreciate this, in a general
way, we do not need to understand the subtleties of Hawking’s 1974
initial argument for the temperature and entropy of a black hole (taken
to have formed in the distant past from some gravitational collapse). If
we are not concerned with the exact coefficient 8kGn*/ch that appears
in the Bekenstein—-Hawking entropy formula of §2.6, and we would be
satisfied with some approximation to it, then we can find justification
for the general form of black-hole entropy purely from Bekenstein’s orig-
inal®#? 1972 demonstration, which was an entirely physical argument
based on the Second Law and on quantum-mechanical and general-
relativistic principles, as applied to imagined experiments concerned with
the lowering of objects into black holes. Hawking’s black-hole surface
temperature 7su, which for a non-rotating hole of mass M is

K
TBH—M
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(the constant K in fact being given by K=1/(4m)), then follows from
standard thermodynamic principles?®“! once the entropy formula is
accepted. This is the temperature as seen from infinity, and the rate at
which a black hole will radiate is then determined by assuming that this
temperature is spread uniformly over a sphere whose radius is the
Schwarzschild radius (see §2.4) of the black hole.

I am stressing these points here, just to emphasize that black-hole
entropy and temperature, and the process of Hawking evaporation of
these strange entities, albeit of an unfamiliar character, are nevertheless
very much a part of the physics of our universe, fitting in with funda-
mental principles that we have become accustomed to—most particu-
larly with the Second Law. The enormous entropy that black holes possess
is to be expected from their irreversible character and the remarkable
fact that the structure of a stationary black hole needs only a very few
parameters to characterize its state.**/Since there must be a vast volume
of phase space corresponding to any particular set of values of these
parameters, Boltzmann’s formula (§1.3) suggests a very large entropy.
From the consistency of physics as a whole, we have every reason to
expect that our present general picture of the role and the behaviour of
black holes will indeed hold true—except that the eventual ‘pop’ at the
end of the black-hole’s existence is somewhat conjectural. Nevertheless,
it is hard to see what else could happen to it at that stage.

But do we really need to believe in the pop? As long as the space-
time described by the black hole remains a classical (i.e. non-quantum)
geometry, the radiation should continue to extract mass/energy from the
hole at such a rate that would cause it to disappear in a finite time—this
time being ~2 x 107(M/Mo)? years, for a hole of mass M if nothing more
falls into the hole.**! But how long can we expect the notions of clas-
sical space-time geometry to provide a reliable picture? The general
expectation (just from dimensional considerations) is that only when the
hole approaches the absurdly tiny Planck dimension /p of ~ 103°m (around
1072 of the classical radius of a proton) do we expect to have to involve
some form of quantum gravity, but whatever happens at that very late
stage, the only mass left would presumably be somewhere around that
of a Planck mass mp, with an energy content of only around a Planck
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energy Ep, and it is hard to see that it then could last very much longer
than around a Planck time #r (see end of §3.2). Some physicists have
contemplated the possibility that the end-point might be a stable remnant
of mass ~mp, but this causes some difficulties with quantum field
theory.*#! Moreover, whatever the final fate of a black hole might be,
its final state of existence seems to be independent of the hole’s orig-
inal size, and has to do with just an utterly minute fraction of the black-
hole’s mass/energy. There appears to be no complete agreement among
physicists about the final state of this tiny remnant of a black hole,’**”
but CCC would require that nothing with rest-mass should persist to
eternity, so the ‘pop’ picture (together with the ultimate decaying away
of the rest-mass of any massive particle produced in the pop) is very
acceptable from CCC’s point of view, and it is also consistent with the
Second Law.

Yet, despite all this consistency, there is something distinctly odd about
a black hole, in that the future evolution of the space-time, seemingly
unique among future-evolving physical phenomena, results in an
inevitable internal space-time singularity. Although this singularity is a
consequence of classical general relativity (§2.4, §2.6), it is hard to
believe that this classical description would have to be seriously modi-
fied by quantum-gravity considerations, until enormous space-time curva-
tures are encountered, where the radii of curvature of space-time begin
to get down to the extremely tiny scale of the Planck length /p (see end
of §3.2). Particularly for a huge galactic-centre black hole, the place
where such tiny curvature radii begin to show themselves will be an
utterly minute region hugging the singularity in the classical space-time
picture. The location referred to as a ‘singularity’ in classical space-time
descriptions should really be thought of as where ‘quantum gravity takes
over’. But in practice this makes little difference, since there is no gener-
ally accepted mathematical structure to replace Einstein’s picture of
continuous space-time, so we do not ask what happens further, but merely
adjoin a singular boundary of wildly diverging curvature, possibly acting
in accordance with BKL-type chaotic behaviour (§2.4, §2.6).

To get a better understanding of the role of this singularity in the clas-
sical picture, we do well to examine the conformal diagram Fig. 3.13,
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whose two parts are basically re-drawings of Fig. 2.38(a) and Fig. 2.41,
respectively. These pictures, when interpreted as strict conformal
diagrams, incorporate exact spherical symmetry, which is unlikely to
remain at all accurate whenever irregularities are present in the collapse.
However, if we allow ourselves to assume strong cosmic censorship (see
end of §2.5, and §2.6) right up until just before the pop,>* then the
singularity should be essentially spacelike, and the pictures of Fig.3.13
remain qualitatively appropriate as schematic conformal diagrams, despite
the extreme irregularity in the space-time geometry near the classical
singularity.

Fig. 3.13 Conformal diagrams drawn irregularly (to suggest a lack of symmetry) to
indicate (a) gravitational collapse to a black hole; (b) collapse followed by Hawking
evaporation. The singularity remains spacelike according to strong cosmic censorship.

The regions where one should expect quantum-gravity effects to invali-
date the classical space-time picture would be very close indeed to the
singularity, where space-time curvatures begin to reach the extremes
where classical space-time physics can no longer be trusted. At this stage,
there seems to be very little hope of adopting a standpoint like that
involved in the ‘crossover 3-surfaces’ of CCC, in which the space-time
could be extended smoothly through the singularity in order to arrive at
some kind of continuation through to ‘the other side’. Indeed, Tod’s
proposal is intended to distinguish the very tame singularity encountered
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at the Big Bang from the kind of thing—perhaps of chaotic BKL nature—
that one must expect at a black hole’s singularity. Despite Smolin’s stimu-
lating proposal described in §3.3 (Fig. 3.12), I see little hope of quantum
gravity coming to our rescue, so as to allow us to obtain a ‘bounce’ of
some kind, for which the emerging space-time mirrors what came in, in
any direct sense, according to some kind of basically time-symmetric
fundamental physical processes. If it could, then what emerges would
be something of the character of the white hole of Fig. 2.46 or the mess
of bifurcating white holes that we contemplated in §2.6 (contrast Fig.
3.2). Such behaviour would certainly be most unlike the kind of situ-
ation that we find in the universe with which we are familiar, and would
possess nothing resembling the Second Law of our experiences.

Be that as it may, what seems to be happening—at least according to
any kind of physical evolution that we seem to be able to contemplate—
is that physics comes to an end at such regions. Or, if it does not, then
it continues into some kind of universe-structure of a completely foreign
character to that of which we have knowledge. Either way, the material
encountering the singular region is lost to the universe we know, and it
seems that any information carried by that material is also lost. But is
it lost? Or can it somehow slither its way out sideways, in the diagram
of Fig. 3.13(b), where quantum-gravity distortions of normal ideas of
space-time geometry are somehow permitting a kind of seemingly space-
like propagation that would be illegal according to the normal causality
rules of §2.37 Even if so, it is hard to see that any of this information
could emerge, by such means, very much before the moment of the pop,
so that the vast amount of information that was contained in the mater-
ial that went to form a large black hole, say of many millions of solar
masses, could somehow all come flooding out just at around that one
moment, and from that tiny region, that constitutes the pop. Personally,
I find this very hard to believe. It seems to me to be much more plaus-
ible that the information contained in all processes whose future evolu-
tion is directed into such a space-time singularity is accordingly destroyed.

However, there is an alternative suggestion,®* frequently argued for,
that somehow the information has been ‘leaking out’ for a long time
previously, encoded in what are referred to as ‘quantum entanglements’,

182



Conformal cyclic cosmology 3.4

that would be expressed in subtle correlations in the Hawking radiation
coming from the hole. On this view, the Hawking radiation would not
be exactly ‘thermal’ (or ‘random’), but the full information that would
seem to have been irretrievably lost in the singularity is somehow taken
fully into account (repeated?) outside the hole. Again I have my severe
doubts about any such suggestions. It would seem that, according to
proposals of this kind, whatever information finds its way to the vicinity
of the singularity, must somehow be ‘repeated’ or ‘copied’ as this external
entanglement information, which would in itself violate basic quantum
principles.B%

Moreover, in his original 1974 argument,®>! demonstrating the pres-
ence of thermal radiation emanating from a black hole, Hawking explic-
itly made use of the fact that information coming in, in the form of a test
wave, would have to be shared between what escapes from the hole and
what falls into it. It is the assumption that the part that falls into the hole
is irretrievably lost that leads to the conclusion that what comes out must
have a thermal character, with a temperature that is precisely equal to
what we now call the Hawking temperature. This argument depends upon
use of the conformal diagram of Fig. 2.38(a), which to me makes it mani-
festly clear that the incoming information is indeed shared between that
falling into the hole and that escaping to infinity, where that falling into
the hole is lost—this being an essential part of the discussion. Indeed,
for many years, Hawking himself has been one of the strongest propo-
nents of the viewpoint that information is indeed lost in black holes. Yet,
at the 17th International Conference on General Relativity and Gravitation,
held in Dublin in 2004, Hawking announced that he had changed his
mind and, publicly forfeiting a bet that he (and Kip Thorne) had made
with John Preskill, argued that he had been mistaken and that he now
believed™? that the information must in fact all be retrieved externally
to the hole. It is certainly my personal opinion that Hawking should have
stuck to his guns, and that his earlier viewpoint was far closer to the truth!

However, Hawking’s revised opinion is much more in line with what
might be regarded as the ‘conventional’ viewpoint among quantum field
theorists. Indeed, the actual destruction of physical information is not
something that appeals to most physicists, the idea that information can
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be destroyed in a black hole in this way being frequently referred to as
the ‘black-hole information paradox’. The main reason that physicists
have trouble with this information loss is that they maintain a faith that
a proper quantum-gravity description of the fate of a black hole ought to
be consistent with one of the fundamental principles of quantum theory
known as unitary evolution, which is basically a time-symmetric®*33! deter-
ministic evolution of a quantum system, as governed by the fundamental
Schrodinger equation. By its very nature, information cannot be lost in
the process of unitary evolution, because of its reversibility. Hence the
information loss that seems to be a necessary ingredient of Hawking evap-
oration of black holes is, in fact, inconsistent with unitary evolution.

I cannot go into the details of quantum theory here,** but a brief
mention of the rudimentary ideas will be important for our further discus-
sion. The basic mathematical account of a quantum system at a particu-
lar time is provided by the quantum state or wavefunction of the system,
for which the Greek letter Y is frequently used. As mentioned above, if
left to itself the quantum state s evolves with time according to the
Schrodinger equation, this being unitary evolution, a deterministic, basic-
ally time-symmetric, continuous process for which I use the letter U.
However, in order to ascertain what value some observable parameter g
might have achieved at some time ¢, a quite different mathematical process
is applied to , referred to as making an observation, or measurement.
This is described in terms of a certain operation O which is applied to
P, providing us with a set of possible alternatives Y, Y2, P, W, ...,
one for each of the possible outcomes qi, g2, g3, gs, ... of the chosen
parameter g, and with respective probabilities Pi, P2, P3, P, ... for these
outcomes. This entire set of alternatives, with corresponding probabil-
ities, is determined by O and s by a specific mathematical procedure.
To mirror what actually appears to happen in the physical world, upon
measurement, we find that  simply jumps to one of the given set of
alternatives Y1, Yo, W3, Y, ..., say to Js;, where this choice appears to
be completely random, but with a probability given by the correspond-
ing Pj. This replacement of by the particular choice j; that Nature
comes up with is referred to as the reduction of the quantum state or
the collapse of the wavefunction, for which T use the letter R. Following
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this measurement, which has caused y to jump (to ), the new wave-
function ;j again proceeds according to U until a new measurement is
made, and so on.

What is particularly strange about quantum mechanics is this very
curious hybrid, whereby the quantum state’s behaviour seems to alter-
nate between these two quite different mathematical procedures, the
continuous and deterministic U and the discontinuous and probabilistic
R. Not surprisingly, physicists are not happy with this state of affairs,
and will adopt one or another of a number of different philosophical
standpoints. Schrodinger himself is reported (by Heisenberg) to have
said, ‘If all this damned quantum jumping were really here to stay then
I should be sorry I ever got involved in quantum theory.’*3! Other physi-
cists, fully appreciative of the great contribution that Schrodinger made
with the discovery of his evolution equation, while agreeing with his
distaste for ‘quantum jumping’ would nevertheless take issue with
Schrodinger’s standpoint that the full story of quantum evolution has not
yet fully emerged. It indeed is a common view that the full story is
somehow contained within U, together with some appropriate ‘inter-
pretation’ of the meaning of y—and somehow R will emerge from all
this, perhaps because the true ‘state’ involves not just the quantum system
under consideration but its complicated environment also, including the
measuring device, or perhaps because we, the ultimate observers, are
ourselves part of a unitarily evolving state.

I do not wish to enter into all the alternatives or contentions that still
thoroughly cloud the U/R issue, but simply state my own position, which
is to side basically with Schrodinger himself, and with Einstein, and
perhaps more surprisingly with Dirac,*3% to whom we owe the general
formulation of present-day quantum mechanics,?**"! and to take the view
that present-day quantum mechanics is a provisional theory. This is despite
all the theory’s marvellously confirmed predictions and the great breadth
of observed phenomena that it explains, there being no confirmed obser-
vations which tell against it. More specifically, it is my contention that
the R phenomenon represents a deviation from the strict adherence of
Nature to unitarity, and that this arises when gravity begins to become
seriously (even if subtly) involved.?*® Indeed, I have long been of the
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opinion that information loss in black holes, and its consequent violation
of U, represents a powerful part of the case that a strict adherence to U
cannot be part of the true (still undiscovered) quantum theory of gravity.

I believe that it is this that holds the key to the resolution of the conun-
drum that confronted us at the beginning of this section. I am thus asking
the reader to accept information loss in black holes—and the consequent
violation of unitarity—as not only plausible, but a necessary reality, in
the situations under consideration. We must re-examine Boltzmann’s defi-
nition of entropy in the context of black-hole evaporation. What does
‘information loss’ at the singularity actually mean? A better way of
describing this is as a loss of degrees of freedom, so that some of the
parameters describing the phase space have disappeared, and the phase
space has actually become smaller than it was before. This is a completely
new phenomenon when dynamical behaviour is being considered.
According to the normal idea of dynamical evolution, as described in
§1.3, the phase space P is a fixed thing, and dynamical evolution is
described by a point moving in this fixed space, but when the dynam-
ical evolution involves a loss of degrees of freedom at some stage, as
appears to be the case here, the phase space actually shrinks as part of
the description of this evolution! In Fig. 3.14, I have tried to illustrate
how this process would be described, using a low-dimensional analogue.

phase space P* prior

A/‘/to information loss

effective phase space P
following information lgss

:T)*

\ =
evolution >

curve 4

degrees of freedom lost in the black hole

Fig. 3.14 Evolution in phase space following black-hole information loss.
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In the case of black-hole evaporation, this is a very subtle process,
and we should not think of this shrinking as taking place ‘suddenly’ at
any particular time (e.g. at the ‘pop’), but surreptitiously. This is all tied
up with the fact that, in general relativity, there is no unique ‘universal
time’, and this is of particular relevance in the case of a black hole,
where the space-time geometry deviates greatly from spatial homogeneity.
This is well illustrated in the Oppenheimer—Snyder collapse picture (§2.4,
see Fig.2.24), with final Hawking evaporation (§2.5, see Fig. 2.40
and Fig. 2.41) where in Fig. 3.15(a) and its strict conformal diagram
Fig. 3.15(b) I have drawn, with unbroken lines, one family of spacelike
3-surfaces (constant time slices) where all the information lost in the
hole seems to disappear at the ‘instant’ of the pop, whereas, using broken
lines I have drawn a different family of spacelike 3-surfaces for which
the information appears to go away gradually, spread out over the entire
history of the black hole’s existence. Although the pictures strictly refer
to spherical symmetry, they still apply in a schematic way so long as
strong cosmic censorship is assumed (except, of course, at the pop itself).

5
pop

—

———

(b)

Fig.3.15 A Hawking-evaporating black hole: (a) conventional space-time picture; (b)
strict conformal diagram. Loss of internal degrees of freedom may be considered to
result only as the ‘pop’ occurs, this being the picture suggested according to the time-
slices given by unbroken lines. Alternatively, according to the time-slices given by the
broken lines, the loss occurs gradually over the whole history of the black hole.
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This indifference to when the information loss actually takes place
serves to emphasize the fact that its disappearance has no effect on the
external (thermo)dynamics, and we may well take the view that the
Second Law is proceeding according to its normal practice, where the
entropy continues to increase—but we must be careful about what
‘entropy’ notion we are referring to here. This entropy refers to all the
degrees of freedom, including that of all the material that has fallen into
the holes. The degrees of freedom referring to what has fallen in,
however, will sooner or later have to confront the singularity and will,
according to the considerations above, be lost to the system. By the
time the black hole has disappeared with a pop, we must have radically
reduced the scale of our phase space so that—as in a country experi-
encing currency devaluation—the phase-space volumes will count,
overall, for far less than they did before, though this huge devaluation
will not be noticed by the local physics continuing away from the hole
in question. Because of the logarithm in Boltzmann’s formula, this scaling
down of the volumes would simply count as though a large constant
had been subtracted from the overall entropy of the universe external
to the black hole in question.

We may compare this with the discussion at the end of §1.3 where
it was noted that the logarithm in Boltzmann’s formula is what gives
rise to the additivity of entropy for independent systems. In the fore-
going discussion, the degrees of freedom swallowed and finally destroyed
by the black holes play the role of the external part of the system under
consideration in §1.3, with parameters defining the external phase space
X which referred to the Milky Way galaxy external to the laboratory—
whereas here it refers to the black holes. See Fig. 3.16. What we are
now taking to be the world outside black holes, where we might envisage
some experiment being performed, corresponds, in the discussion in
§1.3 (Fig. 1.9), to the internal part of the system, defining the phase
space P. Just as the removal of degrees of freedom in the Milky Way
galaxy of §1.3 (such as some of them being absorbed into the galaxy’s
central black hole) would make no difference whatever to entropy consid-
erations in the experiment being performed, so also would the infor-
mation destruction in black holes throughout the universe, finalized as
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each individually disappears with its pop, yield no effective violation
of the Second Law, consistently with what has been emphasized earlier
in this section!

Nevertheless, the phase-space volume of the universe as a whole would
be very drastically reduced by this information loss,**! and this is basi-
cally what we need for the resolution of the conundrum posed at the
beginning of this section. It is a subtle matter, and there are many detailed
issues of consistency to be satisfied for the reduction in phase-space
volume to be adequate for what is required for CCC. In general

@ black holes
laboratory .
‘. e phase space

lost in black
holes

effective
local
phase
space

total phase space prior to ’5

black-hole information loss

Fig. 3.16 The information loss in black holes does not affect local phase space
(compare Fig. 1.9), though it contributes to the total, prior to loss.

terms, this consistency seems not unreasonable, since the overall entropy
increase that our present acon will indulge in throughout its entire history
is expected to be through the formation (and evaporation) of black holes.
Although it is not totally obvious to me how one calculates, with any
degree of precision, the effective entropy reduction due to information
loss, one could, as a good guess, estimate the Bekenstein—Hawking
entropy of the maximum sizes that the black holes would have reached,
had it not been for the loss in Hawking radiation, and take the total of
this entropy to give the needed scale of reduction in available phase
space for the start of the next aeon. Clearly there are many matters in
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need of more detailed study in order for us to be certain whether CCC
is viable in this respect. But I can see no reason to expect that CCC will
be contradicted by such considerations.
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The scheme of CCC provides us with a different outlook on various
intriguing issues—in addition to the Second Law—that have confronted
cosmology for many years. In particular, there is the question of how
we are to view the singularities that arise in the classical theory of
general relativity, and of how quantum mechanics enters into this
picture. We find that CCC has something particular to say, not only
about the nature of the Big-Bang singularity, but also about what
happens when we try to propagate our physics, as we know it, into the
future as far as it will go, where it apparently either terminates irre-
trievably at a singularity in a black hole, or else continues into the
indefinite future, to be reborn, according to CCC, in the big bang of
a new aeon.

Let me begin this section by examining again the situation in the
very remote future, in order to raise an issue that I had left aside in
the previous section. When, in §3.4, I addressed the matter of the
increasing of entropy into the very remote future, I argued that, in
accordance with CCC, by far the major entropy-raising processes are
the formation (and congealing) of large black holes, followed by their
eventual evaporation away through Hawking radiation after the CMB
cools to lower than the Hawking temperature of the holes. Yet, as we
have seen, CCC’s requirement that the initial phase-space coarse-
graining region (§1.3, §3.4) must be capable of actually matching the
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final one, despite the enormous increase in entropy, can be satisfied if
we accept a huge ‘information loss’ in black holes (as Hawking orig-
inally argued for but later retracted), this allowing the phase space to
become enormously ‘thinned down’ owing to a vast loss of phase-space
dimensionality from the swallowing, and subsequent destruction, of
degrees of freedom by the holes. Once the black holes have all evap-
orated away, we find that the zero of the entropy measure must be re-
set, because of this great loss of degrees of freedom, which means, in
effect, that a very large number gets subtracted from the entropy value,
and the allowable states in the ensuing big bang for the following aeon
find themselves greatly restricted, so as to satisfy a ‘Weyl curvature
hypothesis’, this providing the potential for gravitational clumping in
the succeeding aeon.

There is, however, another ingredient to this discussion, at least in the
opinion of a good many cosmologists, which I have ignored, despite its
having some definite relevance to our central topic (see the end of the
first paragraph of §3.4). This is the issue of ‘cosmological entropy’, arising
from the existence of cosmological event horizons when A>0. In
Fig. 2.42(a),(b), I illustrated the idea of a cosmological event horizon,
which occurs when there is the spacelike future conformal boundary . 7*
that arises if there is a positive cosmological constant A. We recall that
a cosmological event horizon is the past light cone of the ultimate end-
point o* (on .7%) of the ‘immortal’ observer O of §2.5; see Fig. 3.17. If
we take the view that such event horizons should be treated in the same
way as black-hole event horizons, then the same Bekenstein—-Hawking
formula for black-hole entropy (Sen=1A; see §2.6) should be applied
also to a cosmological event horizon. This gives us an ultimate ‘entropy’
value

Sa= %AA,

in Planck units, where Aa is the area of spatial cross-section of the horizon
in the remote future limit. In fact, we find (see Appendix B5) that this
area is exactly
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in Planck units, so this proposed entropy value would be

3m
SA—T,
which depends solely on the value of A, and has nothing to do with any
of the details of what has actually happened in the universe (where I
assume that A is indeed a cosmological constant). In conjunction with
this, if we accept the validity of the analogy, we would expect a tempera-
ture,>lwhich is argued to be
Th= 21_11 %
With the observed value of A, the temperature 7 would have the absurdly
tiny value ~107°K, and the entropy Sa would have the huge value
~3x10'%,

It should be pointed out that this entropy value is far larger than what
we would expect could be achieved through the formation and final evap-
oration of black holes in the presently observable universe as we find it,
which could hardly be expected to reach more than around 10'". These
would be black holes in the region within our present particle horizon
(§2.5). But we should ask what region of the universe is the entropy Sa
supposed to refer to? One’s first reaction might be to think that it is
intended to refer to the ultimate entropy of the whole universe, since it
is just a single number, precisely determined by the value of the cosmo-
logical constant A, and independent not only of any of the detailed activity
going on within the universe, but also of the choice of eternal observer
O, who provides for us the particular future end-point o on .7*. However,
this viewpoint will not work, particularly because the universe might be
spatially infinite, with an indefinite number of black holes within it alto-
gether, in which case the present entropy of the universe could easily
exceed Sa, in contradiction with the Second Law. A more appropriate
interpretation of Sa might well be that it is the ultimate entropy of that
portion of our universe encompassed by some cosmological event
horizon—the past light cone of some arbitrarily chosen 0" on .7*. The
material involved in this entropy would be the portion lying within the
particle horizon of o* (see Fig.3.17).
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our present
particle

. ultimate
horizon —

particle
horizon of O

Fig. 3.17 In the current picture of our universe/acon, our present particle horizon
has a radius of roughly 7% of that where our ultimate particle horizon is expected to
reside.

As we shall be seeing in §3.6, by the time o* is reached, the universe
within its particle horizon should, according to the evolution of the
universe that standard cosmology predicts,*! then be about (23)3z3.4
times more than the amount of material within our present particle
horizon, so if that material were all to be collected into a single black
hole we would get an entropy of around (;— 6~11.4 times 10'?*, where
10'2* was cited in §2.6 as a rough upper limit for the entropy attain-
able by the material within our present observable universe. Thus we
get a possible black hole with an entropy of around 10'%. If that entropy
were in principle attainable within a universe with our observed value
of A, then we should have a gross violation of the Second Law (since
10'2>>3 x 10'?2). However, if we accept the above value of Ta for an
irreducible ambient temperature of a universe, for the observed value
of A, then such an enormous black hole would always remain cooler
than this ambient temperature, so it would never evaporate away by
Hawking radiation. This still causes a problem, because we could
choose o* to be a point on . 7" outside this monstrous black hole, whose
past light cone nevertheless encounters that hole (in the same sense
that an external past light cone might ever be considered to encounter
a back hole), so it seems that its entropy ought to be included —see
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Fig. 3.18, and again we appear to get a vast contradiction with the
Second Law.

black hole ! W A0\ . Dast light come

Fig. 3.18 The past light-cone of any ‘observer’ whether or not at .7*, ‘encounters’
a black hole by engulfing it, rather than by intersecting its horizon.

Moreover, we have a certain leeway here, and can consider that this
amount of material—around 10%' baryons’ worth (3.4 times the 10%
within our presently observable universe, times about 3 because there is
about this much more dark matter than baryonic matter)—can be separ-
ated into 100 separate regions of the mass of 107 protons each. If each
of these formed a black hole, its temperature should remain greater than
Tx and it would evaporate away having reached an entropy of ~10'".
Having 100 of these, we get a total entropy of ~ 10'*! which, being larger
than 3x 10'%, seems still to violate the second Law, but not by so very
much. These figures are perhaps too rough for a definitive conclusion
to be deduced from them. But, in my view, they provide some initial
evidence for caution concerning the physical interpratation of Sa as an
actual entropy and, correspondingly, of 7a as an actual temperature.

I am inclined to be sceptical about Sa representing a true entropy in
any case, for at least two further reasons. In the first place, if A really
is a constant, so Sa is just a fixed number, then A does not give rise to
any actually discernable degrees of freedom. The relevant phase space
is no bigger because of the presence of A than it would be without it.
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From the perspective of CCC, this is particularly clear, because when
we match the available freedom at the . 7* of the previous aeon with that
at the 23~ of the succeeding aeon, we find absolutely no room for the
huge number of putative discernable degrees of freedom that could
provide the enormous cosmological entropy Sa. Moreover, it seems clear
to me that this comment applies also if we do not assume CCC, because
of the remark made early in §3.4 about the invariance of the volume
measure under conformal scale change.*¢?!

However, we must consider the possibility that ‘A’ is not really a
constant, but is some strange kind of matter: a ‘dark-energy scalar field’,
as favoured by some cosmologists. Then one might consider that the
huge Sa entropy comes from the degrees of freedom in this A-field.
Personally, I am very unhappy with this sort of proposal, as it raises
many more difficult questions than it answers. If A is to be regarded as
a varying field, on a par with other fields such as electromagnetism, then
instead of calling Ag just a separate ‘A-term’ in the Einstein field equa-
tion

E=8nT+Ag

(in Planck units)—as given towards the end of §2.6—we say that there
is no ‘A-term’ in the Einstein field equation, as such, but instead take
the view that the A-field has an energy tensor T(A) which (when multi-
plied by 8m) is closely equal to Ag

8nT(A) = Ag,

this being now regarded as a contribution to the fotal energy tensor,
which now becomes T+T(A), and we now think of Einstein’s equation
as written without A-term:

E=8n{T+T(A))}.

But Ag is a very strange form for (8mx) an energy tensor to have,
being quite unlike that of any other field. For example, we think of
energy as being basically the same as mass (Einstein’s ‘E=mc?’), and
so it should have an attractive influence on other matter, whereas this
‘A-field” would have a repulsive effect on other matter, despite its energy
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being positive. Even more serious, in my view, is that the weak-energy
condition referred to in §2.4 (which is only marginally satisfied by the
exact term Ag) will almost certainly be grossly violated as soon as the
A-field is allowed to vary in a serious way.

Personally, I would say that an even more fundamental objection to
referring to Sa= 3% as an actual objective entropy is that here, as opposed
to the case of a black hole, there is not the physical justification of
absolute information loss at a singularity. People have tended to make
the argument that the information is ‘lost’ to an observer once it goes
past the observer’s event horizon. But this is just an observer-
dependent notion; if we take a succession of spacelike surfaces like
those in Fig. 3.19, we see that nothing is actually ‘lost” with regard to
the universe as a whole that could be associated with the cosmolog-
ical entropy, since there is no space-time singularity (apart from those
already present inside individual black holes).!*%¥! Moreover, I am not
aware of any clear physical argument to justify the entropy Sa, like the
Bekenstein argument for black-hole entropy alluded to earlier in this
section.364

cosmologlcal event horizon /\—)

Fig. 3.19 For a cosmological event horizon there is no information loss (unlike
the case of a black hole), as is evident from the all-encompassing nature of a family
of global time-slices.
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Perhaps my difficulty with this is made clearer in the case of the
cosmological ‘temperature’ 7a since this temperature has a strongly
observer-dependent aspect to it. In the case of a black hole, the Hawking
temperature is provided by what is called the ‘surface gravity’ which has
to do with the accelerating effect felt by an observer supported in a
stationary configuration close to the hole, where ‘stationary’ refers to
the relation between the observer and a reference frame held fixed at
infinity. If the observer falls freely into the hole, on the other hand, then
the local Hawking temperature would not be felt.*%! The Hawking
temperature thus has this subjective aspect to it, and may be regarded
as an instance of what is referred to as the Unruh effect that a rapidly
accelerating observer would feel even in flat Minkowski space M. When
we come to consider the cosmological temperature of de Sitter space D,
we would expect, by the same token, that it would be an accelerating
observer who should feel this temperature, not one who is in free fall
(i.e. in geodesic motion; see end of §2.3). An observer moving freely in
a de Sitter background would be unaccelerated in these terms, and, so
it seems, should not experience the temperature 7a.

The main argument for cosmological entropy seems to be an elegant
but purely formal mathematical procedure based upon analytic continu-
ation (§3.3). The mathematics is certainly enticing, but objections can
be raised to its general relevance since, technically, it applies only to
exactly symmetrical space-times (like de Sitter space D). Again there
is the subjective element of the observer’s state of acceleration, arising
because D possesses many different symmetries, corresponding to
different states of observer acceleration.

This issue is brought into better focus if we look more carefully at
the Unruh effect, within Minkowski space M. In Fig. 3.20, I have tried
to indicate a family of uniformly accelerating observers—referred to as
Rindler observers'*"—who, according to the Unruh effect, would ex-
perience a temperature (extremely tiny, for any achievable acceleration)
even though they move through a complete vacuum. This arises through
considerations of quantum field theory. The future ‘horizon’ H for these
observers associated with this temperature is also shown, and we may
well take the view that there should be an entropy associated with Ho,
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for consistency with this temperature and with the Bekenstein—Hawking
discussion of black holes. Indeed, if we imagine what goes on in a small
region in the close neighbourhood of the horizon of a very large black
hole, then the situation would be very closely approximated by that
shown in Fig. 3.21, where Hy locally coincides with the black-hole
horizon and where the Rindler observers would now be the ‘observers
supported in a stationary configuration close to the hole’ considered
above. These observers are the ones who ‘feel’ the local Hawking temper-
ature, whereas an observer who falls freely directly into the hole, being
analogous to an inertial (unaccelerated) observer in M, would not ex-
perience this local temperature. The entire entropy associated with Ho
would, however, have to be infinite, if we carry this picture in M right
out to infinity, which illustrates the fact that the full discussion of black-
hole entropy and temperature actually involves some non-local consid-
erations.

Rindler
observers

Rindler™ ~>
horizon

Fig.3.20 Rindler (uniformly accelerating) observers, feeling the Unruh temperature.

A cosmological event horizon Ha arising when A>0, as considered
above, has a strong resemblance to a Rindler horizon . Indeed, on
taking the limit A—0, we find that H'a actually becomes a Rindler
horizon—but now globally. This would be consistent with the entropy
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formula Sx=3m/A leading to So=00, but it also leads us to question an
assignment of objective reality to this entropy, since this infinite entropy
seems to make little objective sense in the case of Minkowski space.*!

stationary

black-hole
observers

horizon

—

Fig. 3.21 Observers supported in a stationary configuration near a black hole’s
horizon feel a strong acceleration and the Hawking temperature. The situation,
locally, is just like that of Fig. 3.20.

I believe that it has been worth raising these matters at some length
here, because an assignment of a temperature and entropy to the vacuum
is an issue of quantum gravity that is deeply related to the concept
referred to as ‘vacuum energy’. According to our current understand-
ings of quantum field theory, the vacuum is not something totally devoid
of activity, but consists of a seething bustle of processes going on at a
very tiny scale, where what are called virtual particles and their anti-
particles momentarily appear and disappear in ‘vacuum fluctuations’.
Such vacuum fluctuations, at the Planck scale /p, would be expected to
be dominated by gravitational processes, and the performing of the
necessary calculations that would be needed for obtaining this vacuum
energy is something far beyond the scope of currently understood math-
ematical procedures. Nevertheless, general arguments of symmetry, to
do with the requirements of relativity, tell us that a good overall descrip-
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tion of this vacuum energy ought to be by an energy tensor T, of the
form

T,=2g

for some A. This looks like exactly the kind of energy term T(A) that
would be provided by a cosmological constant, as we have seen above,
so it is frequently argued that a natural interpretation of the cosmolog-
ical constant is that it is this vacuum energy, where

A= (8m)" A.

The point of view would appear to be to regard the ‘degrees of freedom’
responsible for the large cosmological entropy Sa to be those in the
‘vacuum fluctuations’. These are not what I have referred to above as
‘discernable’ degrees of freedom since, if they count at all towards phase-
space volume, they do this uniformly throughout space-time, and consti-
tute merely a background, to which normal physical activity going on
within the space-time appears not to contribute.

Perhaps even more seriously, a trouble with this interpretation appears
to be that when attempted calculations are made for obtaining the actual
value of A, the answer comes out as

A=o00, or A=0, or A=1p2,

te being the Planck time, see §3.2. The first of these answers is the most
honest (and a common kind of conclusion that the direct application of
the rules of quantum field theory tends to yield!), but it is also the most
wrong. The second and the third are basically guesses as to what the
answer should come out as after the application of one or another of the
standard procedures of ‘getting rid of infinities’ is applied (such proce-
dures, when applied with appropriate skill, often providing superbly accu-
rate answers in non-quantum-gravity circumstances). The answer A=0
seems to have been the favoured one so long as it had been believed that
A=0 fitted the observational facts. But since the supernova observations
referred to in §2.1 indicated that it is more probable that A>0, and later
observations supported this conclusion, a non-zero value for A has become
favoured. If the cosmological constant really is vacuum energy in this
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sense of gravitational ‘quantum fluctuations’, then the only scale avail-
able is the Planck scale, which is why it seems that # (or equivalently
lp), or some reasonably small multiple of it, ought to provide the needed
scale for A. For dimensional reasons, A has to be the inverse square of a
distance, so a rough answer A=t is to be expected. However, as we
have seen in §2.1, the observed value of A is more like

A=107120 12

so something is clearly seriously wrong, either with this interpretation
(A=A/8m) or with the calculation!

Our understanding of these matters has not settled down to being free
of contention, so it is perhaps of some interest to see what CCC has to say
about them. The physical status of Sa and 7a does not crucially affect CCC,
because even if the entropy Sa and the temperature 7 are to be regarded
as physically ‘true’, this would not need to alter the picture presented by
CCC. No black hole, that we expect to arise in the universe we know,
would reach anything like the size at which Tx would seriously affect its
evolution. As for Sa, it does not really appear to help with the conundrum
of §3.4, since the issue there concerned discernable degrees of freedom
(i.e. degrees of freedom that relate to actual dynamical processes) and
simply introducing an ‘entropy’ with the fixed value 37/A does not really
change anything. We can simply ignore it, since it seems to play no role
in the dynamics, and even if considered ‘real’ it appears to correspond to
no physically discernable degrees of freedom. Either way, my personal
position will be to ignore both Sx and Tx and to proceed without them.

The scheme of CCC does, on the other hand, provide a clear, but
unconventional, perspective on how quantum gravity would affect the
classical space-time singularities. The inevitability of space-time singu-
larities in classical general relativity (§2.4, §2.6, §3.3) had led physicists
to turn to some form of quantum gravity, in order to understand the phys-
ical consequences of the extraordinarily large space-time curvatures that
are expected to arise in the vicinity of such singularities. But there has
been very little agreement on how quantum gravity might alter these
classically singular regions. There is, indeed, very little agreement about
what ‘quantum gravity’ actually ought to be, in any case.
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Nevertheless, theorists had learned to take the view that, so long as
radii of space-time curvature are very large in comparison with the Planck
length Ir (see §3.2), then a reasonably ‘classical’ picture of space-time
can be maintained, perhaps only with tiny ‘quantum corrections’ to the
standard classical equations of general relativity. But when space-time
curvatures get extremely large, the radii of curvature getting down to the
absurdly tiny scale of /r (of some 20 orders of magnitude smaller than
the classical radius of a proton), then even the standard picture of a
smoothly continuous space would seem to have to be completely aban-
doned, and replaced by something radically different from the smooth
space-time picture that we are used to.

Moreover, as had been argued strongly by John Wheeler and others, even
the ordinary closely flat space-time of our experiences, if it were to be exam-
ined at the minute Planck scale, would be found to have a turbulent chaotic
character, or perhaps a discrete granular one—or have some other kind of
unfamiliar structure better described in some other way. Wheeler presented
the case for quantum effects of gravity causing the space-time at the Planck
level to curl up into topological complications that he viewed as a kind of
‘quantum foam’ of ‘wormholes’.?7" Others have suggested that some kind
of discrete structure might manifest itself (like entangled, knotted ‘loops’,1*7!
spin foams,*7? lattice-like structure,®*” causal sets,*™ polyhedral struc-
ture,*”! etc.>7®), or that a mathematical structure, modelled on quantum-
mechanical ideas, referred to as ‘non-commutative geometry’®””1 might
become relevant, or that higher-dimensional geometry might play a role,
involving string-like or membrane-like ingredients,’*”®! or even that space-
time itself might fade away completely, where our normal macroscopic
picture of space-time arises only as a useful notion derived from a different
more primitive geometric structure (as happens with ‘Machian’®®*"! theories
and with ‘twistor’” theory®8%). It is clear from this multitude of very different
alternative suggestions that there is no agreement whatsoever as to what
might actually be going on in ‘space-time’ at the Planck scale.

However, according to CCC, we find at the Big Bang something very
different from such wild or revolutionary suggestions. We are provided
with a much more conservative picture, were we have a perfectly smooth
space-time, differing from that of Einstein only in that there is no conformal
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scaling provided, and where time evolution can be treated by conventional
mathematical procedures. In CCC, the singularities occurring deep within
black holes, on the other hand, would have a very different kind of struc-
ture from the Big-Bang singularity and we would have to consider some
kind of exotic information-destroying physics which might indeed have to
incorporate quantum-gravity ideas differing very much from the notions
of space-time used in today’s physics, and which might well have to incor-
porate some wild or revolutionary idea among those mentioned above.

For many years, it has been my own view that these two different
singular ends of time appear to have very distinct characters. This is in
keeping with the Second Law, where for some reason gravitational degrees
of freedom would have to be greatly suppressed at the initial end, though
not at the final end. I had always found it extremely puzzling why
quantum gravity should appear to treat these two occurrences of space-
time singularities in so different a way. Yet I had imagined, in accor-
dance with what seems now to be the prevailing view, that it should be
some form of quantum gravity that governs the kind of geometrical struc-
ture that we find close to both of these types of singular space-time
geometry. However, apparently at variance with the common view, I had
taken the position that the true ‘quantum gravity’ must be a grossly time-
asymmetric scheme, involving whatever modification to the standard
present-day rules of quantum mechanics might be required—in accord-
ance with aspirations I have mooted, towards the end of §3.4.

What I had not anticipated, before turning to the point of view that
CCC provides, is that the Big Bang should be treated as part of an essen-
tially classical evolution, in which deterministic differential equations
like those of standard general relativity govern behaviour. The question
was: how could CCC escape the conclusion that enormous space-time
curvatures, with radii down to the level of the Planck scale lp near the
Big Bang, ought to imply that quantum gravity enters the scene, with
all the chaos this entails? CCC’s answer is that there is curvature and
there is curvature; or, to be more precise, there is Weyl curvature C and
Einstein curvature E (the latter being equivalent to Ricci curvature; see
§2.6 and Appendix A). The point of view of CCC is to agree that when
radii of curvature approach the Planck scale, the madness of quantum
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gravity (whatever it is) must indeed begin to take over, but the curva-
ture in question must be Weyl cuvature, as described by the conformal
curvature tensor C. Accordingly, the radii of curvature involved in the
Einstein tensor E can become as small as they like, and the space-time
geometry will still remain essentially classical and smooth so long as
the Weyl cuvature radii are large on the Planck scale (Fig. 3.22).

large curvature means

//small radius of curvature

small curvature
means large
radius of
curvature

Fig. 3.22 A ‘radius of curvature’ is a reciprocal measure of curvature, which is
small when curvature is large and large when curvature is small. Quantum gravity
is commonly argued to become dominant when space-time curvature radii approach
the Planck length, but CCC maintains this applies only to Weyl curvature.

In CCC we find that C=0 at the Big Bang (whence infinite radii of
Weyl curvature), so we are justified in thinking that essentially classical
considerations should suffice. Thus, the detailed nature of the big bang of
each aeon is completely determined by what happened in the remote future
of the prior aeon, and this should lead to observational consequences, some
being considered in §3.6. Here, classical equations continue the evolution
of the massless fields that were present in the very remote future of the
immediately preceding aeon into the big bang of the next. On the other
hand, currently standard approaches to the very early universe assume that
quantum gravity should be what determines behaviour at the Big Bang.
In essence, this is the kind of way (though in terms of the ‘inflaton field’)
that inflationary cosmology would decree how the slight deviations in the
CMB temperature (of a few parts in 10°) over the sky come about, initially,
from ‘quantum fluctuations’. However, CCC provides a completely different
perspective on this, as we shall be seeing in the next section.
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3.6 Observational implications

The question I now wish to address is whether we can find any specific
evidence either for or against the actual validity of CCC. It might have
been thought that any evidence concerning a putative ‘aeon’ existing
prior to our Big Bang must be well beyond any observational access,
owing to the absolutely enormous temperatures arising at the Big Bang
that would seem to obliterate all information, thereby separating us from
all that supposed previous activity. We should bear in mind, however,
that there has to be an extreme organization present in the Big Bang, as
a direct implication of the Second Law, and the arguments of this book
point to this ‘organization’ having the character that allows our Big Bang
to be extended conformally to an aeon prior to ours, this extension being
governed by a very specific deterministic evolution. Accordingly, we
may hope that there is a sense in which we might actually be able to
‘see’ through to that earlier acon!

We must ask what particular features of the remote future of an aecon
prior to ours could possibly be observable to us. One thing we can be
sure about, if CCC is right, is that the overall spatial geometry of our
own aeon must match that of the previous one. If the previous aeon were
spatially finite, for example, then so must be our own. If that earlier aeon
accorded, on a large scale, with a Euclidean spatial 3-geometry (K=0),
then that would apply also to ours, and if it had a hyperbolic spatial
geometry (K<0), then our own would be hyperbolic also. All this follows
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because the spatial geometry, overall, is determined by that of the
crossover 3-surface, the geometry of this 3-surface being common to
both of the aeons that it bounds. Of course, this provides us with nothing
new, of observational value, because we have no independent inform-
ation about the overall spatial geometry of the previous aeon.

On a somewhat smaller scale, however, matter distributions might
rearrange themselves throughout the progress of each aeon, according
to some perhaps complicated—but in principle comprehensible—dynam-
ical processes. The ultimate behaviour of these matter distributions,
taking the form of massless radiation (in accordance with CCC’s §3.2
requirements), can then leave its signature on the crossover 3-surface,
and then perhaps be readable in subtle irregularities in the CMB. Our
task would be to try to ascertain what, in this regard, would be the most
important processes taking place in the course of the previous aeon, and
to try to decipher the signals hidden in such tiny irregularities in the
CMB.

To be able to interpret signals of this kind, we would need to have a
good understanding of the phenomena that would be likely to cause
them. For this, we would need to look carefully at the dynamical processes
that might be involved in the previous aeon, and also at how things might
propagate from one aeon to the next. However, in order to come to any
reasonably clear conclusions about the detailed nature of the previous
aeon, it will be of help to us if we may assume that it was, in a general
way, essentially like our own. Then we can take it that the aeon prior to
ours would have behaved closely in accord with the kind of behaviour
that we see in the universe around us, and with the general way that we
expect it to evolve far into the future.

Most evidently, we would expect that there should have been an expo-
nential expansion in the remote future of the previous aeon, where we
are supposing that a positive cosmological constant dominated the behav-
iour of that aeon in its very remote future, as appears to be the case for
our own (if we take A to be a constant). The resulting exponential expan-
sion of that earlier acon would bear a tantalizing similarity to the supposed
inflationary phase of the currently favoured picture of the very early history
of the universe, although this currently conventional picture has the
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exponential expansion taking place between around 107¢s and 107*?s in
our own aeon (see §2.1, §2.6), closely following the Big Bang itself. On
the other hand, CCC would place this ‘inflationary phase’ before the Big
Bang, identifying it with the exponential expansion of the remote future
of the previous aeon. In fact, as mentioned in §3.3, an idea of this nature
was put forward by Gabriele Veneziano in 19987811 although his scheme
depended heavily on ideas from string theory.

<—~___US, NOW

visual angle €

{Blg Ban.g ffA‘Llast scattering ¢/

Fig.3.23 Standard (pre-inflationary) cosmologies could imply that points in the CMB
sky, farther apart than that given by €=2° in the figure, should not be correlated (since
the past light cones of ¢ and r do not intersect), whereas such correlations are observed

up to ~60° as with the points like p and r.

One important aspect of this general idea is that two key pieces of
observational evidence that have appeared to provide crucial support for
the now-standard picture of inflationary cosmology, as discerned from
the slight temperature variations seen in the CMB, appear also to be
addressed by pre-Big-Bang theories of this nature. One of these is that
there are observed correlations in the temperature variations in the CMB
over angles in the sky (up to about 60°, in fact) that would be incon-
sistent with the standard cosmologies of the Friedmann or Tolman type
(§2.1, §3.3), if the Big Bang itself is taken to be inherently free of corre-
lations. This inconsistency is shown in the schematic conformal diagram
of Fig. 3.23, where we see that the surface of last scattering ¢/, (decoup-
ling; see §2.2) occurs much too close to the Big-Bang 3-surface @3~ for
effects that are seen from our vantage point to be more than about 2°
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apart in the sky ever to have been in causal contact. This assumes that
all such correlations arise from processes occurring after the Big Bang,
and the different points of @3~ are in fact completely uncorrelated. Inflation
is able to achieve such correlations because the ‘inflationary phase’
increases the separation between 24~ and ¢/ in a conformal diagram,?*32!
so that much larger angles seen from our vantage point are brought into
causal contact; see Fig. 3.24.

i'—Big Bang 93~ for inflationary model

Fig. 3.24 An effect of inflation is to increase the separation between </ and 37,
so that the correlations of Fig. 3.23 can occur.

The other key piece of observational evidence, seeming to give
powerful support for inflation, is that the initial density fluctuations—
giving rise to temperature fluctuations in the CMB—appear to be scale-
invariant, over a very broad range. The explanation from inflationary
cosmology is that there were initial completely random irregularities—
of the nature of initially tiny quantum fluctuations in the ‘inflaton field’
(§2.6)—very soon after the Big Bang, and that the inflationary expon-
ential expansion then took over, expanding out these irregularities to an
enormous degree, these finally being realized®%¥in actual density irreg-
ularities in the (mainly dark) matter distribution. Now, an exponential
expansion is a self-similar process, so one can imagine that, if there is
randomness about how the initial fluctuations are distributed in space-
time, then the result of the exponential action on these fluctuations will
be a distribution with a certain scale invariance. In fact, long before the
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inflationary scheme was put forward, it had been proposed by E.R.
Harrison and Y.B. Zel’dovich, in 1970, that the observed departures from
uniformity in the early distribution of material in the universe could be
explained if it were assumed that the initial fluctuations are indeed scale
invariant. Not only had inflation given a rationale for this supposition,
but analysis of subsequent observations of the CMB confirmed a close
scale invariance over a much greater range than before, this lending some
considerable support to the inflationary idea, particularly since it had
been hard to see what other kind of explanation could give a theoretical
basis to this observed scale invariance.

Indeed, if one is to reject the inflationary picture, then some alterna-
tive explanation needs to be found of both the scale invariance and the
correlations beyond the horizon size in the initial density irregularities.
In CCC (as in the earlier Veneziano scheme) these two points are dealt
with by, in effect, displacing the inflationary phase of the universe from
occurring at a moment just following the Big Bang to a phase of expan-
sion preceding the Big Bang, as described above. Since we still have an
effectively self-similar expanding universe phase, just as with inflation,
it may be expected that this could lead to density fluctuations that have
a scale-invariant nature. Moreover, correlations outside the horizon scale
of the Friedmann or Tolman models are again to be expected, but now
these correlations are set up through events that took place in the aecon
prior to our own. See Fig. 3.25.

previous aeon

N

Fig. 3.25 In CCC, the required correlations of Fig. 3.23 can result from activities
in the prevous aeon.
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In order to be more explicit about what these events are likely to be,
according to CCC, we must try to understand what are likely to be the
most relevant processes taking place in the aeon prior to our own. Before
we can go into much detail about this, there is a particularly big ques-
tion mark that we must address. For there is the possibility, remarked
upon in §3.3, that we shall have to take seriously: John A. Wheeler’s
suggestion that the basic constants of Nature might not have had precisely
the same values in the previous aeon as they have in our own. The most
obvious (and simplest) such possibility would be that the large number
N, referred to towards the end of §3.2, which in our aeon takes a value
N=~10% might, in the previous acon, have taken some other value. There
are, of course, two sides to this issue. It would certainly make life easier
if we can just assume that fundamental numerical constants such as N
had the same value in the previous aeon as in ours, or that the observa-
tions would be insensitive to (reasonable) alterations in the values of
such numbers. But, on the other hand, if there are clearly distinguish-
able effects that changing a number such as N might have, then there is
the potentially exciting possibility of actually ascertaining whether or
not such a number might be fundamentally constant (perhaps being in
principle mathematically calculable) or whether it actually does change
from aeon to aeon, possibly in a specific mathematical way that could
itself be subject to observational test.

A subsidiary set of question marks relate to our expectations about
the evolution of our own aeon into the very remote future. Here, the
requirements and expectations for CCC are somewhat clearer. Specifically,
A must indeed be a cosmological constant, with our aeon continuing in
its exponential expansion until eternity. The Hawking evaporation of
black holes must be a reality and must continue until every hole has
wasted away, having deposited virtually its entire rest-energy into low-
energy photons and gravitational radiation, and that this will occur even
for the largest holes that can be expected to arise, until finally they disap-
pear. Might this Hawking radiation be actually detectable if it occurs in
the aeon previous to ours? We must bear in mind that the entire mass-
energy of a black hole, no matter how vast it might initially be, would
ultimately have to be deposited in this low-frequency electromagnetic
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radiation. This energy would ultimately find its way to the crossover
surface and leave its subtle imprint on the CMB of our own aeon. It is
not at all out of the question, if CCC is right, that this information could
eventually be teased out of the tiny irregularities in the CMB. This would
be most remarkable, if so, since the Hawking radiation in our own aeon
would normally be regarded as being such an absurdly tiny effect that
it would be completely unobservable!

A more unconventional implication of CCC is that the rest-masses of
all particles ought eventually to die away over the vast stretches of eter-
nity (§3.2), so that in the asymptotic limit all surviving particles, including
charged ones, become massless. The decaying away of rest-mass would
be a universal feature of massive particles, according to this scheme, so
one might imagine that it should be an observable effect. However, at
the present stage of understanding, no prescription of the rate at which
mass should decay away has been provided by the scheme. The decay
rate might well be extremely slow so it would be hard to maintain that
the fact that no such decay has yet been observed represents any evidence
against this aspect of CCC. One point that is worth making here is that
if all different types of particles have mass-decay rates that are closely
in proportion, then the effect would appear as a very slow weakening of
the gravitational constant. As of 1998,5384 the best experimental limit on
any decay rate for the gravitational constant is that it would have to be
less than about 1.6 x 107!2 per year. However, we must bear in mind that
a time scale of 10'? years is small beer indeed, compared with the time
periods of at least 10'® years that need to be considered to allow time
for all black holes to disappear. At the time of writing, I am not aware
of any clear-cut observational proposal that would seriously test the
aspect of CCC that demands the ultimate decaying away of rest-mass.

There is, however, one clear implication of CCC that it ought to be
possible to settle by an appropriate analysis of the CMB. The effect in
question is gravitational radiation from very close encounters between
extremely massive black holes (primarily those in galactic centres). What
would be the result of such encounters? If the holes pass each other partic-
ularly closely, it would be expected that each would deflect the motion of
the other sufficiently violently for there to be a burst of gravitational radi-
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ation that could carry away a significant amount of energy from the pair,
and their relative motions would be appreciably reduced. If the encounter
were extremely close, then they might well capture each other in orbits
about one another, which become tighter and tighter through energy loss
in gravitational waves, resulting in a huge total energy loss in this way,
until they swallow each other up to form a single black hole. In extreme
cases, this single hole could be the result of a direct impact, the resulting
hole being initially grossly distorted before the hole settles down via grav-
itational radiation. In either case, there would be an enormous emission
of gravitational waves that would be likely to carry away a not inconsid-
erable proportion of the huge combined mass of the two holes.

<—p —US, NOW

intersection of these two
spheres is this circle S'

sphere $*

\
sphere \/\//,;)-/’\\’:)
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previous AC
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Fig. 3.26 Encounters betwen huge black holes in the prevous aeon would result in
significant bursts of gravitational radiation. This should appear as a circle of enhanced
or diminished temperature (depending on the overall geometry) in the CMB sky.

On the kind of time-scale that we are concerned with here, this entire
burst of gravitational waves would be virtually instantaneous. In the absence
of large further distorting effects throughout the universe, this radiation
would be essentially contained within a thin almost spherical shell spreading
out forever, from the point of encounter e, with the speed of light. In terms
of a (schematic) conformal picture (Fig. 3.26) this burst of energy would
be represented as an outward light cone @ *(e) extending from e to .7"
(where .7 is the “.7*" of the previous aeon to ours). Although it might
be thought that this radiation would eventually become indefinitely
attenuated, so as to be totally insignificant when ultimately .7" is reached,
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if we look at the situation in the right way we find that this is not really
the case. We recall from §3.2 that the gravitational field can be described
by a [3]-tensor K, satisfying a conformally invariant wave equation
VK=0. Since this wave equation is indeed conformally invariant, we can
regard K as propagating in the space-time depicted in Fig. 3.26, where
we can regard the future boundary .7" as just an ordinary spacelike
3-surface. The wave reaches . 7" within a finite period, and K has a finite
value there which can be estimated from the geometry of Fig. 3.26.

Now, because of the relation between K and the conformal tensor C
in the conformal metric scaling that we would use for Fig. 3.26 (the
‘C=0K’ of §3.2), we find that the conformal tensor C reaches the value
zero at .7 ", but it has a non-zero normal derivative across .7 " (see Fig.
3.27; compare with Fig. 3.6). From the arguments of Appendix B12, we
find that the presence of this normal derivative has two direct effects.
One of these is to influence the conformal geometry of the crossover
surface (.7"/287), via a conformal curvature quantity known as the
‘Cotton—York™ tensor, so that we cannot expect the spatial geometry of
the succeeding aeon (our own) to be exactly of FLRW type at the moment
of the Big Bang, but there must be slight irregularities. The second, and
more immediately observable effect, would be to give the w-field mate-
rial—argued, in §3.2, to be the initial phase of new dark matter—a signif-
icant ‘kick’ in the direction of the radiation; see Fig. 3.27.

initial (conformal-factor)
material receives a ‘kick’

our acon

B
previous aeon

gravitational‘J

wave burst
(oscillating K)

Fig. 3.27 When the gravitational wave burst encounters the crossover 3-surface, it
gives the initial material of the succeeding aeon a ‘kick’ in the direction of the wave.
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If the point u represents our present location in the space-time, then
the past light cone ‘@~(u) of u represents that part of the universe that
we can directly ‘see’. The intersection of @ ~(u) with the decoupling
surface ¢/ thus represents what can be directly observed in the CMB,
but since in a strict conformal representation ¢/ is very close (about 1%
of the total height of the entire aeon, in the picture) to the crossover
surface ©3~, we do not go too far wrong®*#! if we think of this as the
intersection of ‘@ ~(u) with 24~ Ignoring any effects of non-uniformity
of matter density within our own aeon, this will be a geometrical sphere.
The future light cone @*(e) of e will also meet .#" (=237) in a geomet-
rical sphere, assuming that we may ignore density non-uniformity in this
previous aeon. Thus, the part of the radiation from the black-hole
encounter at e that is visible directly to us through its effect on the CMB
will be the intersection of these two spheres on %3 -, this intersection
being a geometrically precise circle C, where I am here ignoring the
slight difference between the 3-surfaces 23~ and <.

The ‘kick’ that the impulse of energy-momentum that the gravitational
wave burst will impart on the (presumed) primordial dark matter will
have a component in our direction that could be towards us or it could
be away from us, depending on the geometrical relation between u, e,
and the crossover surface. This effect of being towards us or away from
us would be the same all around the entire circle C. Thus, we expect
that for each such black-hole encounter in the previous aeon, for which
these two spheres intersect, there would be a circle in the CMB sky that
contributes either positively or negatively to the background average
CMB temperature over the sky.

For a useful analogy, imagine a pond in a gentle rain, on a peaceful
windless day. Each drop of rain will cause a circular ripple to move
outwards from the point of impact, but if there are many such impacts
the individual ripples will soon be hard to discern as they continually
move outwards to overlap each other in complicated ways. Each impact
is to be thought of as analogous to one of the black-hole encounters
envisaged above. After a while, the rain peters out (the analogue of
the black holes finally disappearing through Hawking evaporation),
and we are left with a random-looking pattern of ripples, and from a
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photograph of such a pattern it would be hard to ascertain that it had
been produced in this way. Nevertheless, if the appropriate statistical
analysis is performed on this pattern, it ought to be possible (if the rain
had not continued for too long) to reconstruct the original spatio-temporal
arrangement of impacts of the original raindrops, and to be fairly confi-
dent that the pattern had actually arisen from discrete impacts of this
nature.

It had seemed to me that some analysis of the CMB in this kind of
statistical way ought to be able to provide a good test of the CCC proposal.
So, having the occasion to visit Princeton University, at the beginning
of May 2008, I took the opportunity to consult David Spergel, who is a
world expert in the analysis of CMB data. I asked him if anyone had
seen such an effect in the CMB data, to which he replied ‘No’, following
this up with ‘but then nobody has ever looked!” He later presented the
problem to one of his post-doctoral assistants, Amir Hajian, who subse-
quently carried out a preliminary analysis on the observational data from
the WMAP satellite observatory, to try to see if there is any evidence
for this kind of effect.

What Hajian did was to choose a succession of alternative radii,
starting at an angular radius of about 1° and then increasing this radius
in steps of around 0.4° up to an angular radius of about 60° (for 171
different radii in all) For each given radius, circles of this radius centred
on 196608 different points scattered uniformly over the sky would each
have the average CMB temperature around the circle calculated. Then a
histogram would be produced, to see if there is any significant devia-
tion from what would be expected from the ‘Gaussian behaviour’ of
completely random data. At first, certain ‘spikes’ were seen, seeming to
present clear evidence of a number of individual circles of the nature
predicted by CCC. However, before long it became clear that these were
completely spurious, as the circles in question passed through certain
regions of the sky, some connected with the positioning of our own Milky
Way Galaxy, that were known to be hotter or colder than the normal
CMB sky. To eliminate such spurious effects, information from regions
close to the galactic plane had to be suppressed, and by this means the
spurious ‘spikes’ were effectively eliminated.
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A point that is worth making at this stage is that, in any case, a good
many of the circles that provided the spikes had radii of over 30° in
the sky, and should not have arisen in any case, according to CCC—if
the aeon prior to ours had a roughly similar overall history to that which
is anticipated for our own aeon. The reason for this is that the galactic
black-hole encounters being considered here should not have arisen
before around what would have been ‘the present time’ in the previous
aeon, which in our aeon occurs about % of the way up the conformal
diagram (Fig. 3.28). Simple geometry then shows that black-hole
encounters, with e occurring later than % of the way up the conformal
diagram of the previous aeon, would necessarily give rise to circles of
radii less than 30° from our vantage point at u (in disagreement with
many of the spikes). Accordingly, the temperature correlations that these
effects could produce would not stretch across the celestial sphere by
as much as 60°. It is a curious fact that correlations in the observed
CMB temperature do seem to fall away at around 60°, which is unex-
plained in the standard inflationary picture, as far as I am aware, and
this may perhaps be considered to represent some support for the CCC
proposal.

now us

\

our acon

A

previous aeon evw\
l black-hole encounter

Fig.3.28 We appear to be about % of the way up our aeon, in a conformal diagram.
If this applies also to the earliest black-hole encounters in the previous aeon, then
a cut-off in angular correlations at 60° is to be expected.
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With the removal of these spikes, there still appeared to remain various
seemingly significant systematic departures from the Gaussian random-
ness in Hajian’s analysis. Such a departure, involving an apparent excess
of cold circles in a range of angular radii between about 7° and 15°,
looked particularly noteworthy and, in my opinion, required explanation.
It could well be that these effects are the result of some spurious ingre-
dients that are nothing to do with CCC, but it seemed to me that a crucial
issue was whether the departures from randomness had specifically to do
with the fact that the regions of the sky being averaged over were actu-
ally circles as opposed to some other shape, as the actual circular nature
of the presumed disturbances in the CMB would appear to be a charac-
teristic feature of this prediction of CCC. Accordingly, I suggested that
the analysis be repeated, but with an area-preserving ‘twist’ applied to
the celestial sphere (see Fig. 3.29), so that actual circles in the celestial
sphere would appear to be more elliptically shaped according to the
analysis. I had proposed that three different versions of the analysis should
be carried out, one with no celestial twist, one with a small twist, and
one with a larger twist. I had anticipated that CCC should predict that
the non-Gaussian effect should be greatest with no twist, somewhat reduced
with a small twist, and perhaps wiped out altogether with the large twist.

Fig.3.29 Twisting the CMB sky (using the formula 0°=6, @ = @+ 3ar 6*-2a6")
in spherical polar coordinates. This sends circles into more elliptical shapes.

However, the result of this analysis (carried out by Hajian in the
autumn of 2008) surprised me! Completely systematically over the range
of radii from 8.4° to 12.4° (which encompassed 12 successive distinct
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histograms), the small amount of celestial twist actually enhanced this
particular effect very clearly, whereas the larger celestial twist did indeed
make it go away. In other parts of the histograms there were somewhat
similar indications of a sensitivity to the circularity of the shape being
examined. At first, I was somewhat dumbfounded by this finding, being
unable to imagine how the enhancement due to the small amount of twist
could be explained, but then the possibility occurred to me that there
might be large inhomogeneities in the mass distribution (preferably) in
our own aeon that serve to distort circular images slightly into elliptical
ones.>%! We recall, from §2.6, the significant distortions of images that
the presence of Weyl curvature can produce (see Fig. 2.48). The enhancing
of the effect that the small twist had produced could arise (according to
my suggested picture of things) from a fortuitous agreement, in some
regions of the sky, between the amount of artificial celestial twist that
had been introduced and actual distortion due to Weyl curvature. In other
regions the twist would lead to greater disagreement, but the effect could
well be an overall enhancement, in appropriate circumstances, as those
due to disagreement could easily be lost in the ‘noise’.

The likely presence of significant distortions, due to intervening Weyl
curvature, unfortunately complicates the analysis considerably. It might
be useful to break up the celestial sky into smaller regions, in order to
try to identify where there might be significant Weyl curvature along the
line of sight between u and the decoupling 3-surface ¢/ Perhaps this
could be related to known inhomogeneities in the mass distribution in
the universe (e.g. the large ‘voids’®#7). In any case, there is something
distinctly tantalizing about the situation in which the observations seem
to have left us for the time being. It is certainly to be hoped that these
matters will be clarified in the not-too-distant future, so that before too
long the physical status of conformal cyclic cosmology can actually be
resolved in a clear-cut way.
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Epilogue

Tom looked incredulously at Aunt Priscilla, then he said “And that’s the
craziest idea I ever heard of!”

Tom strode off to make his way to his aunt’s car which would drive
him home, and his aunt followed a short way behind. But presently he
paused, to examine the raindrops falling on a large pond, to one side
of the mill. The rain had by now tailed off considerably, to form a
faint drizzle, and the impacts of individual raindrops were now clearly
seen. Tom watched them for a while—and he couldn’t help himself
wondering ...
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Appendix A: Conformal rescaling,
2-spinors, Maxwell and Einstein theory

Most of the detailed equations that I give here take advantage of the 2-
spinor formalism. This is not a matter of necessity, since the more familiar
4-tensor description could have been provided pretty well throughout,
as an alternative. However, not only is the 2-spinor formalism simpler
when it comes to expressing conformal invariance properties (see A6),
but it also provides a more systematic overview when it comes to under-
standing the propagation of massless fields and the corresponding
Schrodinger equation for their constituent particles.

Conventions employed here, including the use of abstract indices, are
as in Penrose and Rindler (1984, 1986),/4!1 except that A denotes the
cosmological constant here, rather than the ‘A’ of that work, and the
scalar curvature quantity ‘A’ that appears there would be%R. References
to equations starting with ‘P&R’ refer to that work, and in fact all the
needed equations are to be found in the 1986 Volume 2. The Einstein
tensor E., used here is the negative of the ‘Einstein tensor’ Rah_%Rgab
used there (with the same sign of Ricci tensor Ra as adopted there), so
that the Einstein field equations become (as in §2.6 and §3.5)

Eu= %Rgab —Ru=8nGTw+ Agub-
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Al Cycles of Time

A1. The 2-spinor notation: Maxwell equations

The 2-spinor formalism employs quantities with abstract spinor indices
(for the complex 2-dimensional spin-space) for which I use italic capital
Latin letters, either unprimed (A, B, C, ... ) or primed (A", B, C’, ... ),
these being interchanged under complex conjugation. The (complexi-
fied) tangent space at each space-time point is the tensor product of the
unprimed with the primed spin-space. This enables us to adopt the
abstract-index identification

a=AA’, b=BB’, c¢=CC’, ...

where the italic lower-case Latin index letters a, b, c, ... refer to the
space-time tangent spaces. More specifically, the tangent spaces refer to
indices in upper position and the cotangent spaces to indices in the lower
position.

The anti-symmetric Maxwell field tensor Fu» (=— F) can be expressed
in 2-spinor form in terms of a symmetric 2-index 2-spinor @as (=@sa)
by

Fab=@ap €rB+PaB €

where €43 (=—€sa=Ea) is the quantity defining the complex symplectic
structure of spin-space and is related to the metric by the abstract-index
equation

8ab=EAB EAB’,

spinor indices being raised or lowered according to the following prescrip-
tions (where index-ordering on the epsilons is important!)

§'=e"8, Tr=8'ea ne=""np, Mp=n'eas.

The Maxwell field equations (denoted collectively by VF=41J in §3.2),
with source as the charge-current vector J¢, are

Vi Fre1=0, V=41 J?,

(where square brackets around indices denote anti-symmetrization; round
brackets, symmetrization), the charge-current conservation equation being
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VaJa:().
These take the respective 2-spinor forms (P&R 5.1.52, P&R 5.1.54)
VAB A=2mJ* and VaaJ* =0.

When there are no sources (J*=0), we get the free Maxwell equations
(denoted by VF=0 in §3.2)

VA% @ap=0.

A2. Massless free-field (‘Schrodinger’) equation

This last equation is the case n=2 of the massless free-field equation
(P&R 4.12.42), or ‘Schrodinger equation’®? for a massless particle of
spin %n (>0):

VA pasc..e=0,
where ¢asc..£ has n indices and is totally symmetric

QaBc..E= P @BC..E).

For the case n=0, the field equation is usually taken to be C1¢p =0, where
the D’ Alembertian operator O is defined by

O= Vava,

but in curved space-time, we need the operator V. to refer to covariant
differentiation, and the form of equation (P&R 6.8.30)

(0+9)¢ =0

will be preferred here, as it is conformally invariant, in the sense that
we shall come to shortly (A6), R=R.* being the scalar curvature.
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A3 Cycles of Time

A3. Space-time curvature quantities

The (Riemann—Christoffel) curvature tensor Ruca has the symmetries
Rabea =Riabiieay = Redab, Riavera = 0,
and relates to commutators of derivatives via (P&R 4.2.31)
(VaVo=VpV)V? = RupVE.

This fixes the choice of sign convention for Ruwcs. We here define the
Ricci and Einstein tensors and the Ricci scalar, respectively, by

Riw=Ra’, Ew=3Rgw—Rws, where R=R.
and the Weyl conformal tensor Cascq is defined by (P&R 4.8.2)
Copcd=Rou?—2 R[a[cghjd]_i_%Rglacngd’
this having the same symmetries as Ru.c« but, in addition, all traces vanish
Caun’=0.
In spinor terms, we find that we can write (P&R 4.6.41)
Cavea=Wascoeasecn+Pascpesecp
where the conformal spinor Wagcp is totally symmetric
Wapcp="Tupcp).

The remaining information in R is contained in the scalar curvature
R and the trace-free part of the Ricci (or Einstein) tensor, the latter being
encoded in the spinor quantity ®scp- with symmetries and Hermiticity

q)ABC ‘D= (I)(AB)(C ‘D)= q)CDA ‘B°
where (P&R 4.6.21)

1 1 1 1
Dupas=—3 Rar+gRgar=5 Ear—gRgab.
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A4. Massless gravitational sources
In Appendix B, we shall be particularly concerned with the Einstein field
equations when the (symmetric) source tensor T is trace-free
T.°=0,

since this is appropriate for massless (i.e. zero rest-mass) sources, telling
us that the spinor-indexed quantity Tagas = Tas45="Ta has the symmetry

Tapas=TyaB).

The divergence equation V*T4,=0, i.e. VA Tapa-=0, can be re-expressed

VS' Tcpas = V'&; Tcpyas.
The Einstein equations above are now (P&R 4.6.32)

Dupas=4ntGTw, R=4A.
When rest-mass is present, so that T has a trace

T =p,

then Einstein’s equations take the form

D ppas=4nGTapaB), R=4MN+8TGU.

A5. Bianchi identities
The general Bianchi identity VR4 =0, in spinor-indexed form, becomes
(P&R 4.10.7, 4.10.8)
Vi Wapcp= Vé; GOcpap and VA Dcepap+ %VDB’R =0.

When R is a constant—a situation that arises with Einstein’s equations
when the sources are massless—we have

VA Dpap=0, whence VeWisco=Va ®cpas,
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A6 Cycles of Time

the symmetry in BCD on the right being implied. Incorporating the
Einstein equation, with massless sources, we get

Vg’lpABCD = 4T[GV§’ Tcpas

(see P&R 4.10.12). Note that when Tascp'=0, we obtain the equation
(P&R 4.10.9)

VAA,LIJABCD = 09

which is the massless free-field equation in A2, for the case n=4 (i.e.
for spin 2).

A6. Conformal rescalings

In accordance with the conformal rescaling (with (2 >0 smoothly varying)
8ab P gabzﬂz 8ab,
we adopt the abstract-index relations

gab - Q—2 gab’
Eap=0Q) €ap, EB=(1e"B

Eap =0 ean, EF =071
The operator V, now must transform
Ve V,

so that the action of V, on a general quantity written with spinor indices
is generated by

Virp=Vinp, Vaa&s=Var€s—Ypals, Vs =Vaans —Yasna,
where
Yar=Q7"' VaaQl=V.log Q,

the treatment of a quantity with many lower indices being built up from
these rules, one term for each index. (Upper indices have a corresponding
treatment, but this will not be needed here.)
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We choose the scaling for a massless field ¢azc..£ to be
Pasc.r = QW'pasc.k
and then find, applying the above prescriptions, that
VP asc.r = O3V Page i

so that the vanishing of either side implies the vanishing of the other, whence
satisfaction of the massless free-field equations is conformally invariant. In
the case of the Maxwell equations with sources, we find that conformal
invariance of the whole system VAZ@4p=2m/", VauJ*'=0 (P&R 5.1.52,
P&R 5.1.54 in A2) is preserved with the scalings

Gas=Q0"'Qap and JMW= QA
since we find

P8¢y = O V4B and VM = QUM

A7. Yang-Mills fields

It is important to observe that the Yang—Mills equations, that form the
basis of our current understanding of both the strong and the weak forces
of particle interactions, are also conformally invariant, so long as we can
ignore the introduction of mass which may be taken to be through the
subsequent agency of the Higgs field. The Yang—Mills field strengths can
be described by a tensor quantity (a ‘bundle curvature’)

Fab@F: - Fba@F7

where the (abstract) indices ©, I, ... refer to the internal symmetry group
(U(2), SU(3), or whatever) of relevance to the particle symmetries. We
can represent this bundle curvature in terms of the spinor quantity @ase’
(P&R 5.5.36) by

Fao' = @apo’ €+ Pas’ 0€an
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where, for a unitary internal group, the complex conjugate of a lower
internal index becomes an upper internal index, and vice versa. The field
equations mirror those for the Maxwell equations, where we supply the
additional internal indices as indicated above. Accordingly the conformal
invariance of Maxwell theory also applies to the Yang—Mills equations,
since the internal indices @, I', ... are unaffected by the conformal
rescaling.

A8. Scaling of zero rest-mass energy tensors
It should be noted that for an energy tensor 7., that is trace-free
(T#=0), we find that the scaling (P&R 5.9.2)
=072 Tay
preserves the conservation equation V¢7T4,»=0, since we find
VoTip=QVT .

In Maxwell theory, we have an expression for the energy tensor in terms
of F. that translates into spinor form as (P&R 5.2.4)

Tap= % PapPAB.
In the case of Yang—Mills theory, we simply have extra indices
Tah:% @apo’ PasDr.

For a massless scalar field, subject to the equation (O +§)¢) =0 consid-
ered earlier (P&R 6.8.30), we have the conformal invariance (P&R 6.8.32)

O+ =030 +3),
where
$ =079,

and then its (sometimes called ‘new improved’)*! energy tensor (P&R
6.8.36)
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Tar=C{2Vau Vs — pVar V1 + p* Papas-}

=3 C{4Vp V') — gV pV°h = 29 VuVi +gRp*¢ar— p*Rav}
C being a positive constant, satisfies the required conditions

Taa = 0, VaTab = 0, and fab = Q_zTab.

A9. Weyl tensor conformal scalings
The conformal spinor Wascp encodes the information of the conformal
curvature of space-time, and it is conformally invariant (P&R 6.8.4)
Wipcp=Wascp.

We note the curious (but important) discrepancy between this conformal
invariance and that needed to preserve satisfaction of the massless free
field equations, where there would be a factor Q! on the right. To accom-
modate this discrepancy, we can define a quantity 1 ascp which is every-
where proportional to Wascp, but which scales according to

Y apcp=Q""YPascp
and we find that our ‘Schrodinger equation’ for gravitons!*# (P&R 4.10.9)
VA Y asep=0.

in vacuum (7w=0), is conformally invariant. In §3.2, the above equa-
tion is written

VK=0.

Corresponding to the Weyl tensor Cascq, above (A3, P&R 4.6.41), we can
define

Kabcd=1/JABCD €AaB SC'D'+1/7A’B'C'D' €A €cD
and we find the corresponding scalings (written C=02C and K=0K in §3.2)
é abed = -QZC abcd, Iéabcd = QKabcd-
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Appendix B: Equations at crossover

As in Appendix A, conventions including the use of abstract indices are
as in Penrose and Rindler (1984, 1986), but with the cosmological
constant here denoted by A, rather than by the ‘A’ of that work, the scalar
curvature quantity there referred to as ‘A’ being iR. There are some
aspects of the detailed analysis presented in what follows that are incom-
plete and provisional, and it is likely that refinements of these proposals
will be needed for a more complete treatment. Nevertheless, we do appear
to have well-defined classical equations that allow us to propagate in a
consistent and fully determined way from the remote future of one acon
into the post-big-bang region of the next.

B1. The metrics g, g, and gu

We examine the geometry in the neighbourhood of a crossover 3-surface
2, in accordance with the ideas of Part 3, where it is assumed that
there is a collar ‘@, of smooth conformal space-time containing .2,
which extends both to the past and to the future of .2, within which
only massless fields are present within ‘@ prior to the crossover 23. We
choose a smooth metric tensor g« in this collar, consistent with the
given conformal structure—Ilocally at least and in an initially somewhat
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arbitrary way. Let Einstein’s physical metric in the 4-region @", just
prior to 20 be gw, and in the 4-region @Y immediately following .2
be g, where

gab = -Qazgah and gvah = (l)zgab.

(Note that these are not quite the conventions used in §3.2, since there
the ‘unhatted’ g.» was used for Einstein’s physical metric. The explicit
formulae given in Appendix A remain valid here as they stand, however.)
As a ‘mnemonic’, we may relate the symbols ‘A’ and ‘V’ to the respec-
tive portions of the null cones at points of 2. In each of these two
regions we are to assume that Einstein’s equations hold, with a fixed
cosmological constant A, and that all gravitational sources in the earlier
region @ are taken to be massless, so that their total energy tensor 7
is trace-free

A
A= 0

For reasons that will emerge later, I shall use a different letter U for
the energy tensor in ‘@Y, and it turns out, for consistency with the
formalism, that this tensor actually has to acquire a small trace

Uaa:‘u,

so that a rest-mass component to the energy tensor begins to emerge in
‘@". It may be conjectured that this has something to do with the emer-
gence of rest-mass in accordance with the Higgs mechanism,®! but this
idea is not explored here. (It should be noted that the ‘hatted’ quantities
such as 7. have their indices raised and lowered respectively by g% and
8a» or, correspondingly, 848, 848 &,5, and &as, whereas the ‘reverse-
hatted’ quantities such as Uy would use g%, gu, &8, &5, &45, and &as).
The Einstein equations hold in the respective regions ‘< * and @Y, so
we have ‘hatted’ and ‘reverse-hatted’ versions holding:

Euw = 8TGTw+ N,
Ew = 8TG U+ A,

where I assume that the same!®?' cosmological constant holds in the two
regions, so that
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B2 Cycles of Time

R=4A, R=4A+8nGpu.

For the moment, the metric gu,, which straddles the cross-over 3-surface
2, is chosen completely freely, but smoothly and consistently with the
given conformal structures of @ " and ‘@V. Later, I provide a proposal
which appears to fix a unique scaling for g., in a canonical and appro-
priate way, so that ultimately a specific choice of gu is provided, for
which I propose the notation ‘ga’ in standard italic type. I also use stan-
dard italic type for the curvature quantities Rusca, €tc. whether or not the
specialization of gu» to ga» is made.

B2. Equations for &"

In what follows, I first consider equations relating to the region ‘©” and
deal with @V afterwards (see B11). We can express the transformation
law of the Einstein (and Ricci) tensor as (P&R 6.8.24)

Dupas— Pasas = QWi VepQ ™" =— Q' a4 V150
together with (P&R 6.8.25)
Q’R-R=6 Q'0Q,
i.e.
(D+9)Q=2R Q3.

This last equation has considerable pure-mathematical interest, being an
instance of what is referred to as the Calabi equation.’®* But it also has
physical interest, being the equation for a conformally invariant self-
coupled scalar field @ which, with R=4A, we can write as

(O+Dw=2A ©°.

Every solution of this ‘@w-equation’, as I shall henceforth refer to it,
provides us with a new metric @’gs» Whose scalar curvature has the
constant value 4A. The conformal invariance of the w-equation is
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expressed in the fact that if we choose a new conformal factor ) and
transform from g., to a new conformally related metric §us

aab = Gar=02bas
then the conformal scaling for the m-field
5=0"®
gives us (as has been remarked upon earlier, in A8; see P&R 6.8.32)
(@ +D6=0-(0+ ¥,

from which the required conformal invariance of the non-linear
w-equation immediately follows. (Note that when A=Q and w=Q we
simply revert to Einstein’s gu» metric, with @=1, and the equation
becomes the identity %A:%A.)

We have seen in A8 that the energy tensor for such a physically
regarded w-field, when the @® term is absent, would be (P&R 6.8.36)

Ta[®w]=C{2Vas® Vi@ —w@Vau Vs @+ Dagas}
= Co*{®wVaa Ve + Papas )

where C is some constant. Moreover, we find that the w? term in the -
equation does not disturb the conservation equation V*Tx[w]=0, so we
adopt this expression for the energy tensor for the ®-field also, and for
consistency with what follows, I shall choose

C = sz
Comparing this with (P&R 6.8.24, B2) above, we find
T[] = 505 02 Dupan= 02T
from Einstein’s equation

Dupas = 41'[G7A21b,

which holds for the gu» metric. For a trace-free energy tensor, we find
that the scaling Tu»=0QT. (A8, P&R 5.9.2) preserves the conservation
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equation, so we are led to the somewhat remarkable re-formulation of
Einstein’s theory, as referred to the g., metric, for massless sources 7.:

Tar=Tau[].

B3. The role of the phantom field

I shall refer to Q, regarded as a particular instance of the massless self-
coupled conformally invariant field @, as the phantom field.®B4 Tt does
not provide us with physically independent degrees of freedom; its pres-
ence (in the gw-metric) simply allows us the scaling freedom that we
need, so that we can rescale the physical metric to obtain a smooth metric
ga», conformal to Einstein’s physical metric, which smoothly covers each
of the joins from one aeon to the next. With the aid of such metrics
covering the crossover 3-surfaces, we are enabled to study in detail the
specific connections between aeons, in accordance with the requirements
of CCC, by using explicit classical differential equations.

The role of the phantom field is just to ‘keep track’ of Einstein’s actual
physical metric by telling us how to scale the metric ga back to the
physical one (via gu=0°gw). Then we express the satisfaction of
Einstein’s equations in the pre-crossover space ‘@ *, but now written in
terms of the g-metric, simply as Tw»=Tw[(1]; that is to say, Einstein’s
field equations are expressed in the demand that the total energy tensor
T.» of all the physical matter fields in the space-time region ‘@” (assumed
massless and having the correct conformal scaling) must be equal to the
energy tensor of the phantom field 7.[€2]. Whereas this can be regarded
as simply a reformulation of Einstein’s theory (using ga») within the open
region ‘@*, it is actually something more subtle. It allows us to extend
our equations up to, and even beyond its future boundary surface .7*.
But in order to do this effectively, we shall need to look a little more
carefully at the relevant equations governing the quantities of interest,
and their expected behaviours as .2 is approached. Moreover, we shall
need to understand, and then eliminate, the freedom in the initially some-
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what arbitrary choice of g-metric—i.e. of conformal factor (3—that has
been chosen for the ‘collar’ ‘@ that we are concerned with.

There is, indeed, some considerable freedom in (, as things stand.
All that has been required, so far, is that ) be such that the guw, as
obtained from Einstein’s physical metric g by ga»=Q"2ga is finite, non-
zero and smooth across 2. Even to demand the existence of such an ()
may seem like a strong requirement, but there are powerful results due
to Helmut Friedrich™ that lead us to expect, when there is a positive
cosmological constant A, that full freedom in the massless radiation fields
in a fully expanding universe model free of massive sources, is incor-
porated by a smooth (spacelike) .7*. To put this another way, we can
expect to find a smooth future conformal boundary . 7%, to ‘©*, as a more-
or-less automatic consequence of the fact that the model is indefinitely
expanding, all the gravitational sources being massless fields propagating
according to conformally invariant equations. It should be noted that, at
this stage, there is no demand that the scalar curvature R of the g-metric
even be a constant, let alone that R=4A, so that the conformal factor
Q! taking us back to Einstein’s g.» would not necessarily satisfy the
w-equation ((+zR)w=2Aw’ in the g-metric.

B4. The normal N to @

We observe that (J—eo, as .7* (=.20) is approached from below, since
the role of (1 is to scale up the finite g-metric at .7* by an infinite amount,
to become the remote future of the earlier acon. However, we find that
the quantity

w=-—Q"'

approaches zero from below, at .7*, in a smooth way (the minus sign
being needed for what follows), and it does this so that the quantity

Vi =N

is non-zero on the cross-over 3-surface .20 (=.7%), and so provides us,
at points of .2, with a future-pointing timelike 4-vector N normal to 2.
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The idea is to try to arrange things so that this particular ‘w’ continues
smoothly across .2, from ‘@"into the ‘©" region, and with non-zero deriv-
ative, so that it actually becomes the same (positive) quantity ‘w’ as is
required for ©"’s Einstein metric gu»=w’gw (and it is for this reason
that the minus sign is needed in ‘w=-Q"""). It may be remarked that
the ‘normalization’ condition (P&R 9.6.17)

G NONP=3A

is an automatic general property of conformal infinity (here 2¢) when
there are just massless sources for the gravitational field, so that

is a unit normal to 2, irrespective of the particular choice of conformal
factor Q.

B5. Event horizon area

As an incidental comment, we see that from this we can readily derive
the fact, noted in §3.5, that the limiting area of cross-section of any
cosmological event horizon must be 12m/A. Any event horizon (taken
in the earlier aeon) is the past light cone C of the future end point o*,
on 4, of some immortal observer in that aeon, as in §2.5 (see Fig.
2.43). Then the limiting area of cross-section of C as o* is approached
from below is 4mr?, where r (in the g-metric) is the spatial radius of
the cross-section. In the g.» metric, this area becomes 4mr2Q%, and we
readily find from the above (B4) that Qr approaches (%A)‘”2 in the limit,
as the cross-section approaches o*, so that our required event-horizon
area is indeed 4mx(3/A)=12m/A. (Although this argument has been
presented in the context of CCC, all that is required for it
is a small degree of smoothness for the spacelike conformal infinity
which, as the work of Friedrich has shown,!®¢ is a very mild assump-
tion, when A>0.)
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B6. The reciprocal proposal

There is of course the awkwardness, in our particular situation here, that
in describing the transition from‘@”" to @Y we do not have a smoothly
varying quantity in either {1 or w which describes the scaling back to
both Einstein metrics gw and guw in a uniform way. But an appropriate
proposal for addressing this issue does indeed appear to be to adopt the
reciprocal proposal w=-Q7", referred to above, and it is then conven-
ient to consider the 1-form II, defined by

_dQ  dw
Q-1 1-0?
i.e.
2O Xo)
-1 1-0?’

since this 1-form is then finite and smooth across .2 so long as we adhere
to the assumptions that are implicit in the above reciprocal proposal. The
quantity IT encodes the information of the metric scaling of the space-
time, albeit in a (necessarily) slightly ambiguous way.®7 We can inte-
grate to obtain a parameter T, so that

II=dt, -cotht=Q (t<0), tanh T=w (Tt=0).

We notice that even here there is the awkward issue of a sign change,
because although IT is insensitive to the replacement of ) by Q7! or to
the replacement of w by w™! there is a change of sign when we pass from
Q7' to . We might take the view that the sign of the conformal factor
is irrelevant, in any case, since in the rescalings of the metric gu»=Q%guw
and gu.=w?gw, the conformal factors  and w appear squared, so that
adopting the positive rather than the negative value of each of these
conformal factors might be regarded as purely conventional. However, as
we recall from Appendix A, there are numerous quantities that scale with
Q (or w) unsquared, most notably there being the discrepancy between
the scalings Wiscp=Wascp and ll}ABCD:Q“l/JABCD, leading to
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Wasco=Q"Yusep i.e. C=Q7'K

in the space @ ", since there the Einstein physical metric is gu, Which
gives us

Wapco=Yascp i.e. C=K

(this convention differing from what was adopted in §3.2 since it is now the
hatted metric in which Einstein’s equations hold). Thus, when considering
the smooth behaviour of quantities across 2, where both () and w change
sign (through oo and 0, respectively), we must exercise care in keeping track
of the physical significance of these signs.

The specific reciprocal relationship between (1 and w that is being
invoked here is, however, dependent upon a restriction in the choice of
scaling for the gu» metric, namely that the condition

R=4A

holds, in conjunction with R=4A=R—-8nGu (see B1). This scaling is
easy to arrange, locally at least, by simply choosing a new (local) metric
gu for @ to be

Sar=00w

where ) is some smooth solution of the w-equation over the cross-
over. This g-metric is not yet the unique g-metric that we are looking
for to cover the cross-over in a canonical way, however, since there are
many possible solutions () of the w-equation that could be chosen. We
shall come to some further requirements shortly, that our canonical
metric ga might be required to satisfy. For the moment, let us simply
assume that our metric gu has been chosen to have R=4A (i.e. we re-
label the above . as our new choice of ga). Without such a restric-
tion as R=4A, this reciprocal relationship between () and w could not
be precise, although for the type of conformal factor w that we expect
to find with Tod’s proposal®®! (see end of §2.6, and §3.1, §3.2), the
behaviour of the conformal factor for the case of a big bang with pure
radiation as the gravitational sources, as with the Tolman radiation-filled
solutions®! (see §3.3), indeed behaves, in the past limit as the big bang
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is approached, as though it were proportional to the reciprocal of the
smooth continuation of an () scale factor for a previous aeon. The choice
of R=4A for the metric of ¢, at 2, is what fixes this proportionality
factor to be (—)1. This is illustrated in the fact that the somewhat remark-
able relation (coming about when we act on Il, with the divergence
operator V¢ and then apply the @w-equation for (2)

0o VL
= Ve
ZA—211, IT°,

which arises when this restriction is placed on R, the specific choice of
form IT (rather than some more general form dQ/(Q*—A), say), depends
upon this restriction that the conformal factor () is to propagate to become
(minus) its inverse w=—1/(}, rather than to, say, —A/Q. Note that at <,
where (l=co, we must have

ILITP=2A

and that at .20 we also have I1,=V.w=N,, the normal vector to .2, of
length /A/3, as noted earlier (P&R9.6.17).

B7. Dynamics across &

How do we expect that our dynamical equations will allow us to propagate
across .20 in an unambiguous way? I am supposing that in the remote future
of the earlier aeon, Einstein’s equations hold, all sources being massless and
propagating according to well-defined deterministic conformally invariant
classical equations. We may suppose that these are Maxwell’s equations,
the Yang-Mills equations without mass, and things like the Dirac—Weyl
equation VA’ ¢4=0 (the Dirac equation in the zero-mass limit), some such
particles acting as sources for the gauge fields, all these taken in the limit
when rest-mass is treated as having reached zero, in accordance with §3.2.
The coupling of these to the gravitational field is expressed in the equation
Tw=Tw[L1], where () is the phantom field. We know that 7%[€1] should be
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finite on .2, despite ) becoming infinite there, because 7.» ought itself to
be finite at .2, the propagation of the fields involved in T being conform-
ally invariant and therefore not particularly concerned with the location of
2t within @ The proposal of CCC is that, until the situation becomes more
complicated, perhaps through ordinary gravitational sources beginning to
acquire rest-mass, etc. via the Higgs mechanism, or whatever alternative
proposal might perhaps eventually turn out to be more accurate, these same
conformally invariant equations for the matter sources must continue into
the post-big-bang region ‘©". We shall see, however, that even with the spare
situation envisaged here, we are not able to escape the appearance of rest-
mass in some form, soon after .2&> has been crossed (see B11).

B8. Conformally invariant D.» operator

To help us to understand the physical implications for @V, and to see
how the Einstein equations for that region will operate, let us first examine
T[] explicitly:

Tl Q= 7 Q{OVauVerpQ ™" + Pagas)
which, with w=—Q"", we can rewrite as
{VauaVep+ Papas ) w=4Gw T [Q].
This is an interesting equation in that the 2nd-order operator
Db =VaaVe s + Pasas

on the left, when acting on a scalar quantity of conformal weight 1
(where the extra symmetry over AB plays no role when the operator acts,
as here, on a scalar), had been earlier pointed out to be conformally
invariant by Eastwood and Rice.®!'% In tensor terms we can write this
(with the sign conventions for R.» adopted here) as

Dab = Vavb - %Qab - %Rab + %Rgab-
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The quantity w does indeed have conformal weight 1, since if ga is
Jfurther rescaled according to

Qap P gab = QZ Qab

then, taking the definition of ®, for the g-metric, to mirror that of w,
for the g-metric,

Sab=0%a to mirror  ga=w?guw,
we find
wr®=0w
(i.e. o has conformal weight 1). Thus,
D =0Dauw.
We can write this conformal invariance in the operator form
D 0o  =QoDa.

Einstein’s equations for the g-metric, written in the g-metric in the terms
given above

Duyw =41tGw3T s,

tell us that the quantity Duw must vanish to third order across 20 itself,
when (as would be expected) T.» is smooth across 2. In particular, the
fact that Duwyw=0 on .2 tells us that

VaiaVeypw (=—wPapas) =0 on 2,
and we can rewrite this as
1
VuNpy=78aVe N on 20

(with N.=V.w, as in B4 above), which tells us that the normals to .2
are ‘shear-free’ at .2, which is the condition for .2 to be ‘umbilic’ at
every one of its points.!B!!
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B9. Keeping the gravitational constant positive

We can gain more insights into the interpretation of the physics that is
implied for us by CCC, if we examine the interaction between the mass-
less gravitational source fields, as described by 7., and the gravitational
field (or ‘graviton field’) 1 aacp, as implied by the equation (P&R 4.10.12)
of A5, taken in ‘hatted form’, and rewritten in terms of w=—Q". We
have

Vi(-w Yascp) =4T[GV§I((— ®)*Tepas),

from which we derive the equivalent equation, in terms of the ‘unhatted’
quantities,

Vg'l/)ABCI) =— 41'[G{ (DVS’ Tcpas+ 3N§, TCDA’B'} .

We note that this equation remains well behaved as w increases smoothly
through zero (from negative to positive). This illustrates the fact that the
family of partial differential equations governing the evolution of the
entire system, in terms of the g-metric, does not encounter difficulties
when passing through .2, from @”" to ‘@V.

Let us imagine that we revert to use of the original g-metric when we
proceed into @Y. Then (apart from the initial ‘glitch’ at .2), the picture
that our classical equations would provide us with, for the evolution of
the space-time @V, would be a collapsing universe model, contracting in
areverse-exponential way, inwards from infinity, seeming to be very much
like a time-reverse of what is envisaged for the remote future of our own
universe. However, there is an important issue of interpretation here,
because when w changes sign, from negative to positive, the ‘effective
gravitational constant’ (as seen particularly in the —Gw in the above
formula when this first term on the right begins to dominate as w gets
larger), has changed sign after 2 is crossed.®1?! The alternative inter-
pretation that CCC presents us with is that because of considerations of
physical consistency with quantum field theory, etc., this particular inter-
pretation (with a negative gravitational constant) of the physics in the
early @V region cannot be properly maintained in a physical way when
gravitational interactions become important. The point of view of CCC
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is that, instead, it becomes more appropriate, as we continue to proceed
into the ‘@Y region, to adopt the physical interpretation provided by
the g-metric, where the now-positive conformal factor w replaces the
now-negative (), and the effective gravitational constant now becomes
positive again.

B10. To eliminate spurious g-metric freedom

An issue that presents itself at this stage is that, according to the require-
ments of CCC, we want a unique propagation into ‘<. This would not
be problematic were it not for the unwanted additional freedom arising
from an arbitrariness in the conformal factor. As things stand, this freedom
provides us with some spurious degrees of freedom, which would inap-
propriately influence the non-conformally-invariant gravitational
dynamics of ‘@V. These spurious degrees of freedom need to be elim-
inated in order that the propagation through 2& be not dependent on this
additional data, undetermined by the physics of ‘©”. This spurious ‘gauge
freedom’ in the choice of g-metric can be represented as a conformal
factor () that can be applied to gu to provide us with a new metric gas
(in accordance with what we had earlier):

Qar P gabzﬂz Qab,
and where, as before, we adopt
w ~ O=0w.

All that we have demanded of ) so far is that it be a positive-valued
smoothly varying scalar field on ‘@ (at least in local patches), which
satisfies the @-equation in the g-metric—this being required in order
that the scalar curvature R remain equal to 4A. The w-equation is a
second-order hyperbolic equation of standard type, so we would expect
to get a unique solution for {) (for a narrow enough collar of .2) if the
value of € and the value of its normal derivative were both to be speci-
fied as smooth functions on 2. This would be straightforward if we
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knew what these values should be chosen to be, in order to achieve some
distinctive characterization for the g-metric. So the question arises: what
condition on this metric can we demand, in order to eliminate these
spurious degrees of freedom?

The kind of thing that we cannot achieve, however, would be some
condition on the g-metric (perhaps together with the @-field) that is
conformally invariant within the class of rescalings that preserve R=4A.
Thus, for a trivial example, we cannot use, as one of our requirements,
the demand that the scalar curvature R of the g-metric take any value
other than 4A, and the demand that it actually does take the value 4A
represents no additional condition whatever on the field, and so cannot
be used as a further restriction to reduce the spurious freedom that we
wish to eliminate. The same would apply, a little more subtly, to a
proposed demand that the squared length g.N“N? of the normal vector
Ne=V*® to <& have some particular value (indices raised and lowered
using the g-metric). For if that value were chosen to be anything different
from A/3, then (as we saw earlier; P&R 9.6.17) the condition could not
be satisfied; whereas if the value is chosen actually to be A/3, then the
condition represents no restriction at all on our spurious freedom.

Similar problems would arise also with a demand such as

Dut=0,

which does not represent any condition on the choice of conformal factor
because of the conformal invariance property (noted earlier)

Dah(l) = Q Dah(k),

so that Dus® =0 is equivalent to Dusw=0. A condition like D6 =0 would
in any case not do as it stands, because there are several components,
and what we require is something that reperesents just rwo conditions
per point of .2 (like the specification of {land its normal derivative at
each point of ). It may be noted, moreover, that (as we have seen
above) Duw necessarily vanishes at 20 to 3rd order, i.e.

Du®=0(w?)
because of the relation D.yw =4TtGw*Tw. However, a reasonable-looking
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condition that could be demanded would be N*N*d,=0 on 2. More
specifically, we could write this suggestion as

NeN*d, = O(w).

We could, in fact, demand that this quantity vanish to 2nd order on ¢,
i.e.

NN?D,, = O(w?)

which might provide us with a suitable candidate for the required two
conditions per point of .2 that would be needed in order to fix €}, and
hence the g-metric via gu=Pgw. From the definition of D, these alter-
native conditions would be equivalent to demanding that respectively

NAWNEEVpa- Vpop®d = O(0?), or O(w?).
In tensor notation, the above two different expressions are
NN G:guw—3Rs) and NNV, — 58w ()6,
where we note (dropping the tildes for the moment) that
VaaVas=VVs—2gaC.
We also note that

NAYNBBY 44 Vw0 = NNV, ¥, 0 —3NN'CT @
=N“N* VuNp— 2NN { >~ (N?Np—30) +3A o).

This rather suggests that a reasonable alternative condition, or pair of
conditions, to impose might be, respectively,

NNV, Ny=0(w), or O(w?),

as this very much simplifies the above condition (where we note that
then NbNb—%A vanishes to 2nd or 3rd order, respectively). Conversely,
if NbNb—%A vanishes to 2nd order then, on .2, then

NN*V.Ny=3NVo(N’Ny) = sN“V(N*Ny—3A)=0 on 4,

so either of these equivalent conditions (in the form N“N*V.N,=O(w) or
N*Ny—3A=0(w?)) can be considered alternatively as one of the required
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restrictions on (L Note that the above expression Q:V"Ha/(%A—2Hbe),
given in B6, requires a simple pole for Q on 2, so if the denominator
vanishes to 2nd order, the numerator V¢II, must vanish to 1st order;
indeed V°IT,= O(w) is also a reasonable form of a single condition to be
imposed, and we recall from B8 that Vm]\’h):%gachNC on .2 whence
ANNVuNp-NaNV N = O(w).

We shall be seeing in B11 below that the energy tensor Us, of @V
necessarily acquires a trace y, according to the procedures being adopted,
this indicating the emergence of gravitational sources with rest-mass.
However, we find that this trace vanishes when 3I1“II,=A. One could
take the view that the CCC philosophy is best served if the presence of
this rest-mass is put off for as long as possible following the big bang.
Accordingly, we could well consider that demanding

3MIL— A= 0(w?)

provides the appropriate two numbers per point of .2 needed to fix the
g-metric. We shall actually find

2nGu=w*(1-w?? GIIUIl.-A),

which becomes infinite at .20 if the zero in 3II°I1,—A is not at least 4th
order. But this is not a problem, because u appears only in the g-metric,
in which Z¢ represents the singular big bang where other infinite curva-
ture quantities would dominate over u if we take the zero in 3IT“I1.— A
to be 3rd order.

We see that there are several alternative possibilities for the required
two conditions per point of .2, which might suffice to fix €, and there-
fore the g-metric, in a unique way. At the time of writing, I have not
fully settled on what would appear to be the most appropriate (and which
of these conditions are independent of which others). My preference,
however, is for the third-order vanishing of 31:[afla_A, as described above.
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B11. The matter content of &V

To see what our equations look like physically in the post-big-bang region
@V, we must rewrite things in terms of the ‘reverse-hatted’ quantities,
with the metric guw=w’gw, with Q=w'. As mentioned earlier, I shall
write the total post-big-bang energy tensor as Ua, in order to avoid confu-
sion with the conformally rescaled energy tensor of the (massless) matter
entering ‘@Y from ‘@™

Tab = (1)_2 Tab.
=w™ Tap.

Since T is traceless and divergence-free, this must hold for T, also (the
scalings being in accordance with A8):

T.4=0, VT.,=0.

We shall find that the full post-big-bang energy tensor must involve two
additional divergence-free components, so that

Uab: Tab+ Var+W ap

Here, V. refers to a massless field, which is to be the phantom field 1,
having now become an actual self-coupled conformally invariant field
in the g-metric, since @ ={) now satisfies the w-equation in the g-metric

(D+9)m=2A @,

which it must do, since the @-equation is conformally invariant and
is satisfied by @=—1 in the g-metric, this becoming w=-—w™"'=Q in the
g-metric. This is reading things the opposite way around from what we
did for ‘@*, where the ‘phantom field” () was taken to be a solution of
the w-equation in the g-metric, and interpreted merely as the scale-factor
that gets us back to the physical Einstein g-metric. In that metric the
phantom field is simply ‘1°, and so it has no independent physical
content. Now, we are looking at € as an actual physical field in the
Einstein physical metric gw» and its interpretation as a conformal factor
is the opposite, since it tells us how to get back to the g-metric, where
in that metric the field would be ‘1’. For this interpretation, it is indeed
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essential that the conformal factors w and () are reciprocals of one
another—although we need also to incorporate the minus sign, so that
it is really — () that provides the scaling from g., back to g.».. This reverse
interpretation is consistent with the equations because it is (), not w, that
has to satisfy the w-equation in the appropriate metric.

Accordingly, the tensor Ve is the energy tensor of this field Q in the
g-metric:

V= Tur[Q].
We find

ATIG Tun[ QU] = 2 { QVaca Va0 + P agas-}
= .Q.3Dab.Q_l = (1)_3Da17(1) = u)‘zDabl

= 0 Dapas-
Note that the trace-free and divergence properties hold:
V.2=0 and V'V, =0.

It is important to notice that the equation satisfied by w in the
g-metric is not the w-equation, for we have seen that it is (, namely
(—1 times) the inverse of w, that satisfies this equation, whence

(0 + o' =34 0™,
i.e.
Dw=2w" V'wV.w +2A{w-w"}.

Accordingly, the scalar curvature of the g-metric is not constrained to
be equal to 4A. Instead (see B2, P&R 6.8.25, A4), we have

R=4A+81Gy,
with
W*R-R=6w"'0w,
whence

WXAA+8TGU) —4A=6w {20~ (V'@ V.0 — %A) + %Au) 1,

248



Appendices B12

from which we deduce (see B6)

p=me* (1-w?)? BIIL—A)
=i {3V9OV.0 - A(Q2- 1)}
= (02— 1)23IIIL—A).

The full energy tensor Uy is to satisfy Einstein’s equations, so we have,
in addition to Iéz4A+8nGu,

41TGT(AB)(A 8y=DPapap.
Since neither T, nor Vi, has a trace, it falls to Wi to pick it up:

ﬁaa: i aa:‘u
= (311 TL—A)(Q2— 1)

and assuming the expressions for U, Tw» , and Vau» given above, we can
calculate W from

ATTGWar = 4G (Ut~ Tar— Vv
to obtain the following expression for 4TGW.»

%(3 MTLAA)(Q* = 1)2Ja+(2Q2+1)QAV a4 V180
=230+ 1)Vau QVapQ - Q' Dy

which is in need of further interpretation.

B12. Gravitational radiation at @

One feature of the infinite conformal rescaling of the metric, as we pass
from ‘@" (with metric gu) to @V (with metric gu) via .20 (with metric
gav) 1s the way in which gravitational degrees of freedom, initially present
and described in the g-metric by ¥ ascp (usually non-zero at .£), become
transferred to other quantities in the g-metric. Whereas we have (A9,
P&R 6.8.4)

Wasen=Wasco=Wascn= O(w),
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the conformal behaviour
W pen= 11) ABCD=— Yapcp=— U)zwvABCD
tells us that
Y ascp=0(w?),

so that gravitational radiation is very greatly suppressed in the big
bang.

However, the degrees of freedom in the gravitational radiation described
by ¥ ascp in ‘©" do make their mark on the early stages of ‘@Y. To see
this, we note that differentiating the relation

Wascp=—wPascop
gives us
VeeWascp=—Vee(WWascp) =— Nee P apcp — WVEEY acp,

so that whereas the Weyl curvature vanishes on .2, its normal derivative
provides a measure of the gravitational radiation (free gravitons) out at
I

Wasep=0, NVisco=—NNpasco=—3MPascp on 2
Also, from the Bianchi identities (A5, P&R4.10.7, P&R4.10.8)
VEWasco=V§ Pcoan and VA Depas=0,
so we have
V& ®cpas=—N§ Yapcp on .,
from which it follows that
NPPVE Pepap=0 on

The operator NP®VE) acts tangentially along 4 (since
NEEINE'=0), so this equation represents a constraint on how ®cpas’
behaves on “. We also note that

N5 V2 ®pepp=—Ni NE Yascp
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from which it follows that the electric part the normal derivative of the
Weyl tensor at on <0

NS, NB, 1/)ABCD+NAC,’ NB Yascp
of Yascp on 20 1s basically the quantity
NVp®eaq on 20
while the magnetic part
iNENgl/)ABCD_iNXNI?/lpA’B'C'D'
which is basically
g4 NV, ®ee on

(e being a skew-symmetrical Levi-Civita tensor), this being the
Cotton(-York) tensor which describes the intrinsic conformal curvature
of .27 [B-13]
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Notes

Hamiltonian theory is a framework that encompasses all of stan-
dard classical physics and which provides the essential link to
quantum mechanics. See R. Penrose (2004), The Road to Reality,
Random House, Ch.20.

Planck’s formula: E=hv . For an explanation of the symbols, see
Note 2.18.

Erwin Schrodinger (1950), Statistical thermodynamics, Second
edition, Cambridge University Press.

The term ‘product’ is consistent with the multiplication of ordin-
ary integers in that the product space of an m-point space with an
n-point space is an mn-point space.

In 1803 the mathematician Lazare Carnot published Fundamental
principles of equilibrium and movement where he noted the losses
of ‘moment of activity’, i.e. the useful work done. This was the
first-ever statement of the concept of transformation of energy or
entropy. Sadi Carnot went on to postulate that ‘some caloric is
always lost’ in mechanical work. In 1854 Clausius developed the
idea of ‘interior work’, i.e. that ‘which the atoms of the body exert
on each other’ and ‘exterior work’, i.e. that ‘which arises from
foreign influences [to] which the body may be exposed’.

Claude E. Shannon, Warren Weaver (1949), The mathematical
theory of communication, University of Illinois Press.
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1.9
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In mathematical terms, the problem comes about because macro-
scopic indistinguishability is not what is called transitive, i.e. states
A and B might be indistinguishable and states B and C indistin-
guishable, yet with A and C distinguishable.

The ‘spin’ of an atomic nucleus is something which requires
considerations of quantum mechanics for a proper under-
standing, but for a reasonable physical picture, one may indeed
imagine that the nucleus is ‘spinning’ about some axis, as might
a cricket ball or baseball. The total value of this ‘spin’ comes
about partly from the individual spins of the constituent protons
and neutrons and partly through their orbital motions about one
another.

E. L. Hahn (1950), ‘Spin echoes’. Physical Review 80, 580-94.

J.P. Heller (1960), ‘An unmixing demonstration’. Am J Phys 28
348-53.

It may be, however, that in the context of black holes the entropy
concept does acquire some measure of genuine objectivity. We
shall be examining this issue in §§2.6 and 3.4.

Various other possible interpretations of the red shift have been
put forward from time to time, one of the most popular being
some version of a ‘tired light’ proposal, according to which the
photons simply ‘lose energy’ as they travel towards us. Another
version proposes that time progressed more slowly in the past.
Such schemes turn out to be either inconsistent with other well-
established observations or principles, or ‘unhelpful’, in the sense
that they can be re-phrased as being equivalent to the standard
expanding-universe picture, but with unusual definitions of the
measures of space and time.

A. Blanchard, M. Douspis, M. Rowan-Robinson, and S. Sarkar
(2003), ‘An alternative to the cosmological “concordance model™’.
Astronomy & Astrophysics 412, 35-44. arXiv:astro-ph/0304237v2
7 Jul 2003.

This term was introduced in a BBC radio broadcast on 28 March
1949, as a somewhat derogatory description, by Fred Hoyle who
had been a strong supporter of the rival ‘steady state theory’, see
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2.5

2.6

2.7

2.8

2.9
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§2.2. In this book, when referring to that particular event that
apparently occurred some 1.37x 10'° years ago, I shall adopt the
capitalized form of this term ‘Big Bang’, but when referring to
other similar occurrences which may occur either in reality or in
theoretical models, I shall tend to use ‘big bang’ without specific
capitalization.

Dark matter is not ‘dark’ (like the large, visibly dark dust regions,
clearly seen from their obscuring effects), but is, more appropri-
ately, invisible matter. Moreover, what is referred to as ‘dark energy’
is quite unlike the energy possessed by ordinary matter which, in
accordance with Einstein’s E=mc?, has an attractive influence on
other matter. Instead it is repulsive, and its effects appear, so far,
to be fully in accord with the presence of something quite unlike
ordinary energy, namely the cosmological constant introduced by
Einstein in 1917, and taken into consideration by virtually all stan-
dard cosmology texts since then. This constant is indeed neces-
sarily constant, and so, quite unlike energy, it has no independent
degrees of freedom.

Halton Arp and 33 others, ‘An open letter to the scientific commu-
nity’. New Scientist, May 22, 2004.

A pulsar is a neutron star—an extraordinarily dense object, around
10 kilometres across, with a mass somewhat more than that of the
Sun—which has an enormously strong magnetic field and rapidly
rotates, sending precisely repeated bursts of electromagnetic radi-
ation detectable here on Earth.

Curiously, Friedmann himself did not actually explicitly address
the easiest case where the spatial curvature is zero: Zeitschrift fiir
Physik 21 326-32.

That is, apart from possible topological identifications, which do
not concern us here.

In both the cases K=0 and K<O there are topologically closed-
up versions (obtained by identifying certain distant points in the
spatial geometry with each other) in which the spatial geometry
is finite. However, in all these situations, global spatial isotropy
is lost.
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2.10

2.11

2.12
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2.14

2.15

2.16

2.17
2.18

2.19

2.20

A supernova is an extraordinarily violent explosion of a dying star
(of mass somewhat greater than our own Sun), allowing it to achieve
a brightness that, for a few days, exceeds the output of the entire
galaxy within which it resides. See §2.4.

S. Perlmutter et al. (1999), Astrophysical J 517 565. A. Reiss et
al. (1998), Astronomical J 116 1009.

Eugenio Beltrami (1868), ‘Saggio di interpretazione della geome-
tria non-euclidea’, Giornale di Mathematiche VI 285-315. Eugenio
Beltrami (1868), ‘Teoria fondamentale degli spazii di curvatura
costante’, Annali Di Mat., ser. II 2 232-55.

H. Bondi, T. Gold (1948), ‘The steady-state theory of the expanding
universe’, Monthly Notices of the Royal Astronomical Society 108
252-70. Fred Hoyle (1948), ‘A new model for the expanding
universe’, Monthly Notices of the Royal Astronomical Society 108
372-82.

I learnt a great deal of physics and its excitement from my close
friend Dennis Sciama, a strong adherent of the steady-state model
at that time, in addition to attending inspirational lectures by Bondi
and Dirac.

J.R. Shakeshaft, M. Ryle, J.E. Baldwin, B. Elsmore, J.H. Thomson
(1955), Mem RAS 67 106-54.

Temperature measures in fundamental physics tend to be given in
units of ‘Kelvin’ (denoted simply by the letter ‘K’, following the
temperature measure, which refers to the number of centigrade (or
Celsius) units above absolute zero.

Abbreviations CMBR, CBR, and MBR are also sometimes used.
For a given temperature 7, Planck’s formula for the black-body
intensity, for frequency v, is 2hv3/(e"/*'—1), where h and k are
Planck’s and Boltzmann’s constants, respectively.

R.C. Tolman (1934), Relativity, thermodynamics, and cosmology,
Clarendon Press.

The local group of galaxies (the galactic cluster that includes the
solar system’s Milky Way galaxy) appears to be moving at about
630 km s~! relative to the reference frame of the CMB. A. Kogut
et al. (1993), Astrophysical J 419 1.
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2.21
2.22

2.23

2.24

2.25

2.26
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H. Bondi (1952), Cosmology, Cambridge University Press.

A curious exception appears to be provided by volcanic vents at
odd places on the ocean floor upon which colonies of strange life
forms depend. Volcanic activity results from heating due to radio-
active material, this having been originated in some other stars
which, at some distant time in the past had spewed out such mater-
ial in supernova explosions. The low-entropy role of the Sun is
then taken over by such stars, but the general point made in the
text remains unchanged.

Slight corrections to this equation come from, on the one hand,
the small amount of heating due to radioactive material referred
to in Note 2.22, and, on the other, effects coming from the burning
of fossil fuels and global warming.

This general point seems to have been first made by Erwin
Schrodinger in his remarkable 1944 book What is life?

R. Penrose (1989), The emperor’s new mind: concerning
computers, minds, and the laws of physics, Oxford University
Press.

It is quite a common terminology to refer to this null cone as a
‘light cone’, but I prefer to reserve that terminology for the locus
in the whole space-time that is swept out by the light rays through
some event p. The null cone, on the other hand (in the sense being
used here), is a structure defined just in the tangent space at the
point p (i.e. infinitesimally at p).

To be explicit about Minkowski’s geometry, we can choose some
arbitrary observer rest-frame and ordinary cartesian coordinates
(x,y,2) to specify the spatial location of an event, with a time co-
ordinate ¢ for that observer’s time coordinate. Taking space and
time scales so that c=1, we find that the null cones are given by
d?—dx?*—dy*—dz?>=0. The light cone (see Note 2.26) of the origin
is then 2—x*—y?—7*=0.

The concept of mass being referred to here (‘massive’, ‘massless’)
is that of rest-mass 1 shall return to this matter in §3.1.

As we recall from §1.3, the ordinary equations of dynamics are
reversible in time, so that, as far as dynamical behaviour—as
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governed by the submicroscopic ingredients of a physical system—
is concerned, we might equally say that causation can propagate
from future to past. The notion of ‘causation’ used in the text is,
however, in accordance with standard terminology.

Length= [Vgidx'd¥ See R. Penrose (2004), The Road to Reality,
Random House, Fig. 14.20, p. 318.

J.L. Synge (1956) Relativity: the general theory. North Holland
Publishing.

It is the existence of this natural metric that actually undermines
completely the seemingly penetrating analysis made by Poincaré,
when he argued that the geometry of space is basically a conven-
tional matter, and that Euclidean geometry, being the simplest,
would therefore always be the best geometry to use for physics!
See Poincaré Science and Method (trans Francis Maitland (1914))
Thomas Nelson.

The rest energy of a particle is its energy in the rest frame of the
particle, so there is no contribution to this energy (kinetic energy)
from the motion of the particle.

The ‘escape velocity’ is the speed, at the surface of a gravitating
body, that an object needs to acquire in order that it can escape
completely from that body and not fall back to its surface.

This was the quasar 3C273.

See appendix of R. Penrose (1965), ‘Zero rest-mass fields including
gravitation: asymptotic behaviour’, Proc. Roy. Soc. A284 159-203.
The argument is slightly incomplete.

The somewhat bizarre circumstance underlying this is related in
my book (1989), The emperor’s new mind, Oxford University Press.
The existence of a trapped surface is an example of what we
now tend to refer to as a ‘quasi-local’ condition. In this case,
we assert the presence of a closed spacelike topological 2-
surface (normally a topological 2-sphere) whose future-pointing
null normals are, at the surface, all converging into the future.
In any space-time, there will be local patches of spacelike 2-
surface whose normals have this property, so the condition is
not a local one; a trapped surface occurs, however, only when
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such patches can join up to form a closed (i.e. of compact
topology) surface.

R. Penrose (1965), ‘Gravitational collapse and space-time singu-
larities’, Phys. Rev. Lett. 14 57-9. R. Penrose (1968), ‘Structure
of space-time’, in Batelle Rencontres (ed. C.M. deWitt, J.A.
Wheeler), Benjamin, New York.

The only requirement that a non-singular space-time needs to have
in this context—and which the ‘singularity’ would turn out to
prevent—is what is called ‘future null completeness’. This require-
ment is that every null geodesic can be extended into the future
to an indefinitely large value of its ‘affine parameter’. See S.W.
Hawking, R. Penrose (1996), The nature of space and time,
Princeton University Press.

R. Penrose (1994), “The question of cosmic censorship’, in Black
holes and relativistic stars (ed. R.M. Wald), University of Chicago
Press.

R. Narayan, J.S. Heyl (2002), ‘On the lack of type I X-ray bursts
in black hole X-ray binaries: evidence for the event horizon?’,
Astrophysical J 574 139-42.

The idea of a strict conformal diagram was first formalized by
Brandon Carter (1966) following the more relaxed descriptions of
schematic conformal diagrams that I had been systematically using
from around 1962 (see Penrose 1962, 1964, 1965). B. Carter
(1966), ‘Complete analytic extension of the symmetry axis of Kerr’s
solution of Einstein’s equations’, Phys. Rev. 141 1242—7. R. Penrose
(1962), ‘The light cone at infinity’, in Proceedings of the 1962
conference on relativistic theories of gravitation, Warsaw, Polish
Academy of Sciences. R. Penrose (1964), ‘Conformal approach
to infinity’, in Relativity, groups and topology. The 1963 Les
Houches Lectures (ed. B.S. DeWitt, C.M. DeWitt), Gordon and
Breach, New York. R. Penrose (1965), ‘Gravitational collapse and
space-time singularities’, Phys. Rev. Lett. 14 57-9.
Coincidentally, the Polish word ‘skraj’ is pronounced in the same
way as ‘scri’ and means a boundary (albeit usually of a forest).
In a time-reversed steady-state model, an astronaut, in free motion,
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following such an orbit, would encounter the inward motion of
ambient material passing at greater and greater velocity until it
reaches light speed, with infinite momentum impacts, in a finite
experienced time.

J.L. Synge (1950), Proc. Roy. Irish Acad. 53A 83. M.D. Kruskal
(1960), ‘Maximal extension of Schwarzschild metric’, Phys. Rev.
119 1743-5. G. Szekeres (1960), ‘On the singularities of a
Riemannian manifold’, Publ. Mat. Debrecen 7 285-301. C.
Fronsdal (1959), ‘Completion and embedding of the Schwarzchild
solution’, Phys Rev. 116 778-81.

S.W. Hawking (1974), ‘Black hole explosions?’, Nature 248 30.
The notions of a cosmological event horizon and particle horizon
were first formulated by Wolfgang Rindler (1956), ‘Visual hori-
zons in world-models’, Monthly Notices of the Roy. Astronom.
Soc. 116 662. The relation of these notions to (schematic) conformal
diagrams were pointed out in R. Penrose (1967), ‘Cosmological
boundary conditions for zero rest-mass fields’, in The nature of
time (pp. 42-54) (ed. T. Gold), Cornell University Press.

This is meant in the sense that C~(p) is the (future) boundary of
the set of points that can be connected to an event p by a future-
directed causal curve.

Following my own work showing the inevitability of singulari-
ties arising in a local gravitational collapse (see Note 2.36 for
1965 reference), referred to in §2.4, Stephen Hawking produced
a series of papers showing how such results could also be obtained
which apply more globally in a cosmological context (in several
papers in the Proceedings of the Royal Society (see S.W. Hawking,
G.FR. Ellis (1973), The large-scale structure of space-time,
Cambridge University Press). In 1970, we combined forces to
provide a very comprehensive theorem covering all these types
of situation: S.W. Hawking, R. Penrose (1970), ‘The singulari-
ties of gravitational collapse and cosmology’, Proc. Roy. Soc.
Lond. A314 529-48.

I first presented this kind of argument in R. Penrose (1990),
‘Difficulties with inflationary cosmology’, in Proceedings of the
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14th Texas symposium on relativistic astrophysics (ed. E. Fenves),
New York Academy of Science. I have never seen a response from
supporters of inflation.

D. Eardley ((1974), ‘Death of white holes in the early universe’,
Phys. Rev. Lett. 33 442—4) has argued that white holes in the early
universe would be highly unstable. But that is not a reason for
their not being part of the initial state, and it is perfectly consist-
ent with what I am saying here. The white holes could well disap-
pear, at various rates, just as in the opposite time direction, black
holes can form, at various rates.

Compare A. Strominger, C. Vafa (1996), ‘Microscopic origin of
the Bekenstein-Hawking entropy’, Phys. Lett. B379 99-104.
A. Ashtekar, M. Bojowald, J. Lewandowski (2003), ‘Mathematical
structure of loop quantum cosmology’, Adv. Theor. Math. Phys.
7 233-68. K. Thorne (1986), Black holes: the mebrane paradigm,
Yale University Press.

Elsewhere I have given this figure with the second exponent as
‘123’ rather than ‘124, but I am now pushing the value up so as
to include a contribution from the dark matter.

Dividing 10*°™ by 10*°%, we get 10°*"1°” =10 as near as
makes no difference.

R. Penrose (1998), ‘The question of cosmic censorship’, in Black
holes and relativistic stars (ed. R.M. Wald), University of Chicago
Press. (Reprinted J. Astrophys. 20 233-48 1999)

See Appendix A3 re Ricci tensor.

Using the conventions of Appendix A.

There will, however, be non-linear effects concerning how the
different effects of lenses along a line of sight ‘add up’. I am
ignoring these here.

A. Q. Petters, H. Levine, J. Wambsganns (2001), Singularity theory
and gravitational lensing, Birkhauser.

R. Penrose (1979), ‘Singularities and time-asymmetry’, in S. W.
Hawking, W. Israel, General relativity: an Einstein centenary survey,
Cambridge University Press, pp. 581-638. S. W. Goode, J.
Wainwright (1985), ‘Isotropic singularities in cosmological models’,
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Class. Quantum Grav. 2 99—-115. R. P. A. C. Newman (1993), ‘On
the structure of conformal singularities in classical general relativ-
ity’, Proc. R. Soc. Lond. A443 473—49. K. Anguige and K. P. Tod
(1999), ‘Isotropic cosmological singularities I. Polytropic perfect
fluid spacetimes’, Ann. Phys. N.Y. 276 257-93.

A. Zee (2003), Quantum field theory in a nutshell, Princeton
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There are good theoretical reasons (to do with electric charge
conservation) for believing that photons are actually strictly mass-
less. But as far as observations are conserved, there is an upper
limit of m<3x1072" eV on the mass of the photon. G.V. Chibisov
(1976), ‘Astrofizicheskie verkhnie predely na massu pokoya
fotona’, Uspekhi fizicheskikh nauk 119 no. 3. 19 624.

There is a common use of the term ‘conformal invariance’ among
some particle physicists, which is much weaker than the one being
used here, namely that the invariance is a mere ‘scale invariance’,
demanded only for the far more restricted transformations g—Q%g
for which Q is a constant.

There can, however, be an issue with regard to what is referred to
as a conformal anomaly, according to which a symmetry of the
classical fields (here the strict conformal invariance) may not hold
exactly true in the quantum context. This will not be of relevance
at the extremely high energies that we are concerned with here,
though it could perhaps be playing a role in the way that conformal
invariance ‘dies off” as rest-mass begins to be introduced.

DJ. Gross (1992), ‘Gauge theory — Past, present, and future?’,
Chinese J Phys. 30 no. 7.

The Large Hadron Collider is intended to collide opposing particle
beams at an energy of 7x 10'? electronvolts (1.12 pJ) per particle,
or lead nuclei at an energy of 574 TeV (92.0 uJ) per nucleus.
The issue of inflation is discussed in §83.4 and 3.6

S. E. Rugh and H. Zinkernagel (2009), ‘On the physical basis of
cosmic time’, Studies in History and Philosophy of Modern Physics
40 1-19.

H. Friedrich (1983), ‘Cauchy problems for the conformal vacuum
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field equations in general relativity’, Comm. Math. Phys. 91 no.
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in The conformal structure of spacetime: geometry, analysis,
numerics (ed. J. Frauendiener, H. Friedrich) Lecture Notes in
Physics, Springer. H. Friedrich (1998), ‘Einstein’s equation and
conformal structure’, in The geometric universe: science, geom-
etry, and the work of Roger Penrose (eds. S.A. Huggett,L.J. Mason,
K.P. Tod, S.T. Tsou, and N.M.J. Woodhouse), Oxford University
Press.

An example of such an inconsistency problem is the so-called
grandfather paradox in which a man travels back in time and kills
his biological grandfather before the latter met the traveller’s grand-
mother. As a result, one of the traveller’s parents (and by exten-
sion the traveller himself) would never have been conceived. This
would imply that he could not have travelled back in time after
all, which means the grandfather would still be alive, and the trav-
eller would have been conceived allowing him to travel back in
time and kill his grandfather. Thus each possibility seems to imply
its own negation, a type of logical paradox. René Barjavel (1943),
Le voyageur imprudent (The imprudent traveller). [Actually, the
book refers to an ancestor of the time traveller not his grandfa-
ther.]

This measure on P is a power of ‘dpadx’, where dp refers to the
momentum variable corresponding to the position variable x; see
for example R. Penrose (2004), The road to reality, §20.2. If dx
scales by a factor Q, then dp scales by Q-'. This scale invariance
on P holds independently of any conformal invariance of the
physics being described.

R. Penrose (2008), ‘Causality, quantum theory and cosmology’,
in On space and time (ed. Shahn Majid), Cambridge University
Press. R. Penrose (2009), ‘The basic ideas of Conformal Cyclic
Cosmology’, in Death and anti-death, Volume 6: Thirty years after
Kurt Godel (1906-1978) (ed. Charles Tandy), Ria University Press,
Stanford, Palo Alto, CA.

Recent experiments at the Super-Kamiokande water Cherenkov
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radiation detector in Japan give a lower limit of the proton half-
life of 6.6x 10% years.

Primarily pair annihilation; I am grateful to J.D. Bjorken for making
this issue clear to me. J.D. Bjorken, S.D. Drell (1965), Relatavistic
quantum mechanics, McGraw-Hill.

The observational situation, concerning neutrinos, at the moment,
is that the differences between their masses cannot be zero, but
the possibility of one of the three types of neutrino being mass-
less seems still to be a technical possibility. Y. Fukuda et al. (1998),
‘Measurements of the solar neutrino flux from Super-Kamiokande’s
first 300 days’, Phys. Rev. Lett. 81 (6) 1158-62.

These operators are the quantities constructible from the gener-
ators of the group which commute with all the group elements.
H.-M. Chan and S. T. Tsou (2007), ‘A model behind the standard
model’, European Physical Journal C52, 635-663.

Differential operators measure how the quantities that they act on
vary in space-time; see the Appendices to see the explicit mean-
ings of the ‘V’ operators used here.

R. Penrose (1965), ‘Zero rest-mass fields including gravitation:
asymptotic behaviour’, Proc. R. Soc. Lond. A284 159-203.

In fact, in Appendix B1, my conventions as to whether g or g is
Einstein’s physical metric will be opposite to this, so that it will
be ‘Q7" that tends to zero.

This depends upon the nature of the matter at 24~ being that of
radiation, as in Tolman’s radiation model described in §3.3, rather
than the dust of Friedmann’s model.

The ‘differential’ dQ/(1-€?) is interpreted, according to Cartan’s
calculus of diffferential forms as a /-form, or covector, but its invari-
ance under Q—Q"!is easily checked using standard rules of calculus:
see, e.g., R. Penrose (2004), The road to reality, Random House.
I personally find the modern tendency to refer to ‘dark energy’ as
contributing to the universe’s matter density rather inappropriate.
Even obtaining a value that is too large by 120 orders of magni-
tude requires some act of faith in a ‘renormalization procedure’,
without which the value ‘e’ would be obtained instead (see §3.5).

263



Cycles of Time

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

264

Determinations based on celestial mechanics provide constraints
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See note 2.50.

See note 3.11.

There is good evidence for some far larger black holes in some
other galaxies, the present record being an absolutely enormous
black hole of mass ~1.8x10'© Me, about the same mass as an
entire small galaxy, but there may also be a good many galaxies
whose black holes are much smaller than our ~4x 10° Mo hole.
The exact figure suggested in the text is far from being crucially
important for the argument. My guess would be that it is actually
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formed. Thus, these 10 macroscopic parameters would seem to
label an absolutely enormous region of phase space, giving a huge
entropy value by Boltzmann’s formula.
http://xaonon.dyndns.org/hawking

L. Susskind (2008), The black hole war: my battle with Stephen
Hawking to make the world safe for quantum mechanics, Little,
Brown.

D. Gottesman, J. Preskill (2003), ‘Comment on “The black hole
final state™’, hep-th/0311269. G.T. Horowitz, J. Malcadena (2003),
‘The black hole final state’, hep-th/0310281. L. Susskind (2003),
‘Twenty years of debate with Stephen’, in The future of theoret-
ical physics and cosmology (ed. G.W. Gibbons et al.), Cambridge
University Press.

265



Cycles of Time

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

266

It was early pointed out by Hawking that the pop itself would,
technically, represent a momentary ‘naked singularity’ in viola-
tion of the cosmic-censorship conjecture. This is basically the
reason why the hypothesis of cosmic censorship is restricted to
classical general relativity theory. R. Penrose (1994), ‘The ques-
tion of cosmic censorship’, in Black holes and relativistic stars
(ed. R.M. Wald), University of Chicago Press.

James B. Hartle (1998), ‘Generalized quantum theory in evapo-
rating black hole spacetimes’, in Black Holes and Relativistic Stars
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cloning theorem’ which forbids the copying of an unknown
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quantum mechanics as it stands, in order to resolve the measure-
ment issue, taking the view that current quantum field theory is,
in any case, indeed just a ‘provisional theory’.
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